

THE NEW AMERICAN MOTDRCYCLE

2010

VICTORY CROSS ROADS ${ }^{\text {w }}$ • VICTORY CROSS COUNTRY"M

FOREWORD

The information printed within this publication includes the latest product information at the time of print. The most recent version of this Service Manual is available to Victory Dealers in electronic format at www.polarisdealers com.

This manual is designed primanily for use by trained Victory service technicians in a properly equipped shop and should be kept available for reference in the shop area. All references to left and right side of the vehicle are from the operator's perspective when seated in a normal riding position.

Some procedures outlined in this manual require a sound knowledge of mechanical theory, tool use, and shop procedures in order to perform the work safely and correctly. Read the text and be familiar with the service procedures before starting the work. Certain procedures will require the use of special tools. Use only the proper tools as specified. If you have any doubt as to your ability to perform any of the procedures outlined in this service manual, contact an authorized Victory dealer for service.

Comments or suggestions about this manual should be submitted via Ask Polaris. Consumers can direct comments or suggestions to: Service Publications Department, Polaris Sales Inc., 2100 Hwy 55, Medina, Minnesota 55340.

Publication Printed November 2009 (PN 9922647)

[^0]| | GENERAL | 1 |
| :---: | :---: | :---: |
| | MAINTENANCE | 2 |
| | FRAME/BODY/EXHAUST | 3 |
| | LUBRICATION \& COOLING | 4 |
| | FUEL SYSTEM/FUEL INJECTION | 5 |
| | ENGINE REMOVAL \& INSTALLATION | 6 |
| | CYLINDER HEAD \& VALVES | 7 |
| | CYLINDER \& PISTON | 8 |
| | CLUTCH, PRIMARY, \& SHIFT | 9 |
| | TRANSMISSION \& CRANKSHAFT | 10 |
| | DRIVE LINE | 11 |
| | FRONT WHEEL \& SUSPENSION | 12 |
| | REAR WHEEL \& SUSPENSION | 13 |
| | TIRES | 14 |
| | BRAKES | 15 |
| | CHARGING SYSTEM | 16 |
| | IGNITION SYSTEM \& BATTERY | 17 |
| | ELECTRIC STARTER | 18 |
| | WIRING \& LIGHTING | 19 |

TRADEMARKS

The following are Trademarks or Registered Trademarks of Polaris Sales Inc. as of May 1, 2009:
8 -BALL ${ }^{\text {TM }}$
EIGHT BALL ${ }^{\text {Tu }}$
FREEDOM ${ }^{\text {(}}$
HAMMER ${ }^{\text {(8) }}$
HAMMER ${ }^{(8)}$ S
HAMMER 8-BALL ${ }^{\text {TM }}$
JACKPOT $^{\text {(6) }}$ (JACKPOT ${ }^{\text {TM }}$ IN CANADA)
KINGPIN ${ }^{\text {(8) }}$
KINGPIN 8-BALL ${ }^{\text {8 }}$
KINGPIN LOW $^{\text {™ }}$
VEGAS ${ }^{(8)}$
VEGAS 8-BALL ${ }^{\text {(1) }}$
VEGAS LOW ${ }^{\text {Tu }}$
VEGAS JACKPOT ${ }^{\text {(}}$
VICTORY ${ }^{\text {(8) }}$
VICTORY MOTORCYCLES ${ }^{(8)}$
VICTORY CROSS ROADS ${ }^{\text {TM }}$
VICTORY CROSS COUNTRY ${ }^{\text {TM }}$
VICTORY PERFORMANCE ${ }^{\text {® }}$
VICTORY VISION ${ }^{(8)}$
NESS SIGNATURE SERIES VEGAS JACKPOT ${ }^{\text {® }}$

Polaris Sales Inc. acknowledges the following products mentioned in this manual:
Loctite, Registered Trademark of the Henkel Corporation
Nyogel, Registered Trademark of Wm. F. Nye Co.
FLEXLOC, Registered Trademark of SPS Technologies
Fluke, Registered Trademark of John Fluke Mfg. Co.
Mity-Vac, Registered Trademark of Neward Enterprises, Inc.
STA-BIL, Registered Trademark of Gold Eagle
Torx, Registered Trademark of Textron
Dunlop, Registered Trademark of Dunlop Tire Corporation.

CHAPTER 1

 SPECIFICATIONS / GAUGE / AUDIO

 SPECIFICATIONS / GAUGE / AUDIO}
GENERAL INFORMATION 1.3
SAFETY INFORMATION 1.4
GENERAL SPECIFICATIONS 1.5
2010 CROSS ROADS / CROSS COUNTRY SPECIFICATIONS 1.5
2010 CROSS ROADS I CROSS COUNTRY (CONT.) 1.6
VEHICLE LOADING 1.7
GROSS VEHICLE WEIGHT RATING (GVWR) 1.7
VEHICLE INFORMATION
VEHICLE IDENTIFICATION NUMBER (VIN) 1.81.8
MODEL NUMBER. 1.8
VIN NUMBER / MANUFACTURER LABEL 1.9
VECI / NECI / TIRE INFORMATION LABELS 1.9
ENGINE NUMBER LOCATION 1.9
KEY IDENTIFICATION NU MBER 1.9
SADDLEBAG WARNING LABEL 1.9
REAR SHOCK AIR PRESSURE LABEL 1.9
PUBLICATIONS \& TECHNICAL LITERATURE 1.10
PUBLICATION PART NUMBERS 1.10
MATERIAL SAFETY DATA SHEET (MSDS) 1.10
REFINISHING
VICTORY TOUCH-UP \& REFINISHING PAINT 1.111.11
VICTORY DETAIL \& FINISH RESTORER KITS AND PRODUCTS 1.11
PAINTING TERMS 1.11
PAINT COLORS BY MODEL 1.12
PAINT COLOR CODES 1.12
BREAK IN PERIOD 1.13
EMISSIONS 1.14
EMISSION CONTROL SYSTEMS / EMISSION SOURCES 1.14
EXHAUST / NOISE EMISSION CONTROL 1.14
CRANKCASE EMISSION CONTROL 1.14
EVAPORATIVE EMISSION CONTROL 1.14
SPECIAL SERVICE TOOLS 1.15
TRANSPORTING, ELEVATING, AND SECURING THE MOTORCYCLE 1.18
KEY SWITCH 1.19
INSTRUMENT CLUSTER - CROSS ROADS 1.19
INSTRUMENT CLUSTER (CROSS COUNTRY) 1.21
CONSOLE SWITCHES (CROSS COUNTRY) 1.25
HAND GRIP HEATER SWITCH 1.25
1.26
LEFT HANDLEBAR SWITCHES
MODE BUTTON 1.26
HAZARD SWITCH (EMERGENCY FLASHERS) 1.26
HEADLAMP HIGH / LOW BEAM SWITCH 1.26
TURN SIGNAL SWITCH 1.26
TURN SIGNAL MOMENTARY FEATURE 1.27
STARTER INTERLOCK 1.27
RIGHT HANDLEBAR CONTROLS 1.27
ENGINE STOP SWITCH 1.27
ENGINE STARTER BUTTON 1.27
FRONT BRAKE LEVER REACH ADJUSTMENT 1.28
AUDIO / COM / CRUISE CONTROL BUTTONS 1.28

SPECIFICATIONS / GAUGE / AUDIO

RADIO / AUDIO SYSTEM CONTROLS 1.28
CB RADIO / ICOM SYSTEM 1.37
INTRODUCTION - CB RADIO FCC RULES 1.37
HEADSET USE
1.37
1.37
GETTING STARTED - CB / ICOM 1.37
CB CHANNELS 1.37
PUSH-TO-TALK (PTT) 1.38
SQUELCH 1.38
CB RADIO VOLUME SETTING (DRIVER) 1.39
CB RADIO VOLUME SETTING (PASSENGER) 1.39
CB LO/DX 1.39
CB FREQUENCIES 1.40
ICOM SYSTEM 1.40
VOX BREAK SETTING 1.40
ICOM VOLUME SETTING (DRIVER) 141
ICOM VOLUME SETTING (PASSENGER) 1.41
HEADSET RECEPTACLES 1.41
AUX / IPOD 1.41
GETTING STARTED - AUX / IPOD 1.41
AUX / IPOD INPUT CABLE 1.41
INPUT CABLE SETUP 1.41
IPOD USE 1.42
IPOD PLAY LISTS 1.42
IPOD SONG CONTROL 1.43
XM RADIO
1.44
ABOUT XM RADIO
XM READY LEGAL 1.44
XM READY SUBSCRIPTION 1.44
GETTING STARTED - XM RADIO 1.44
XM RADIO RECEPTION 1.45
XM RADIO MENU OPTIONS 1.45
XM RADIO SETTINGS 1.45
XM CATEGORY SELECTION 1.45
XM CHANNEL SELECTION 1.46
NAV MP3 1.46
BEFORE YOU BEGIN - NAV MP3 1.46
TIPS FOR NAV MP3 OPERATION 1.47
GETTING STARTED - NAV MP3 1.47
REFERENCE 1.48
SAE TAP DRILL SIZES 1.48
METRIC TAP DRILL SIZES 1.48
DECIMAL EQUIVALENTS 1.48
FAHRENHEIT TO CELSIUS 1.49
MEASUREMENT CONVERSION CHART 1.49

1.2

GENERAL INFORMATION

TRADEMARKS

The following are REGISTERED trademarks of Polaris Industries Inc.:

VICTORY MOTORCYCLES, VICTORY, VICTORY PERFORMANCE, VICTORY VISION, NESS SIGNATURE SERIES VICTORY VISION, FREEDOM, POLARIS; POLARIS THE WAY OUT; VEGAS; VEGAS JACKPOT; HAMMER; KINGPIN; NESS SIGNATURE SERIES VEGAS JACKPOT.

Polaris acknowledges the following products mentioned in this manual:

LOCTITE, is a registered trademark of the Henkel Corporation
DUNLOP, is a registered trademark of the Dunlop Tire Corporation.
STA-BIL, is a registered trademark of Gold Eagle
NYOGEL, trademark of Gold Eagle
FLUKE, registered trademark of the Fluke Corporation
XM, a registered trademark of $X M^{\ominus}$ Satellite Radio, Inc.

SERVICE RULES

In order to perform service work efficiently and prevent costly errors, technicians should read the text in this manual and familiarize themselves with the procedures before beginning. Notes, Cautions and Warnings have been included for clarification of text and safety concerns. Knowledge of mechanical theory, tool use and shop procedures are necessary to perform some procedures in this manual safely and correctly.
Use only genuine Victory service parts, including fasteners that require replacement if removed. Do NOT substitute fasteners or hardware.
Cleanliness of parts and tools as well as the work area is of primary importance. Dirt and foreign matter will cause damage to precision parts. Clean the motorcycle before beginning service. Clean all parts before installing.
If difficulty is encountered in removing or installing a component, look to see if a cause for the difficulty can be found. If it is necessary to tap the part into place, use a soft face hammer and tap lightly.
Always follow torque specifications as outlined throughout this manual. Incorrect torquing may lead to serious machine damage or in the case of steering, driveline, and chassis components, can result in loss of control during operation of the motorcycle, which may result in severe personal injury or death.
If a torquing sequence is indicated for nuts, bolts or screws of a certain component, start all fasteners and hand tighten. Following the method and sequence indicated, tighten evenly to the specified torque value. When removing nuts, bolts or screws from a component with several fasteners, loosen them all about $1 / 4$ turn before removing them to prevent distortion of that component.
Replace all oil seals, sealing washers, gaskets, and O -rings with new ones during assembly. Be sure the mating surfaces for the gasket are clean and smooth to avoid leaks and maintain specified tolerances.
Some procedures require removal of retaining rings or clips. Removal can weaken and deform these parts, therefore, they should always be replaced with new parts. When installing new retaining rings and clips, use care not to expand or compress them beyond what is required for installation.
Victory lubricants and greases have been specially formulated to provide maximum performance and protection when applied properly. In some applications, warranty coverage may be void if improper lubricants are used.
Parts requiring grease should be cleaned thoroughly and fresh grease applied before reassembly. Deteriorating grease loses lubricity and may contain abrasive foreign matter.
Always replace locking hardware such as lock nuts or lock washers, fasteners that have pre-applied locking agent, or any other fasteners as noted in this service manual with genuine Victory hardware from an authorized Victory dealer. Working with batteries can be hazardous. Review all battery warnings and cautions.

SAFETY INFORMATION

Understanding Safety Labels \& Instructions

READ AND BECOME FAMILIAR WITH ALL WARNING AND CAUTION SYMBOLS AND STATEMENTS LISTED
BELOW AND IN THE TEXT OF THIS MANUAL BEFORE YOU BEGIN WORK.

This is the safety alert symbol. When you see this symbol on the vehicle or in this manual, be alert to the potential for personal injury. Your safety is involved!

AWARNING

Indicates a hazardous situation, which, if not avoided, could result in death or serious injury.

ACAUTION

Indicates a hazardous situation, which, if not avoided, could result in minor or moderate injury.

NOTICE:

Indicates a situation, which, if not avoided, could result in damage to the motorcycle.

AWARNING

Gasoline is extremely flammable and explosive under certain conditions.

- Always stop the engine and refuel outdoors or in a well ventilated area.
- Do not smoke or allow open flames or sparks in or near the area where refueling is performed or where gasoline is stored.
- Do not overfill the tank. Do not fill the tank neck above the fuel tank insert. Leave air space to allow for fuel expansion.
- If you get gasoline in your eyes or if you swallow gasoline, see your doctor immediately. Never try to syphon gasoline using mouth suction.
- If you spill gasoline on your skin or clothing. immediately wash it off with soap and water and change clothing.
- Never start the engine or let it run in an enclosed area. Engine exhaust fumes are poisonous and can cause loss of consciousness or death in a short time.
AWARNING
The engine exhaust from this product contains chemicals known to cause cancer, birth defects or other reproductive harm.

A WARNING
Never run the engine in an enclosed area without a properly functioning exhaust gas evacuation systern connected to the product.

A WARNING
Wear insulated protection for hands and arms or wait until hot components have cooled sufficiently before working on the product.

 unsafe conditions that may cause severe personal injury or death.

A WARNING
Brake fluid is poisonous. Do not ingest or allow brake fluid to contact eyes. Always wear eye protection when working with brake fluid.

A WARNING
Battery electrolyte is poisonous. It contains sulfuric acid. Serious burns can result from contact with skin, eyes or clothing.

A WARNING

Care should be taken to be sure the motorcycle will not tip or fall while elevated. Severe personal injury or death could occur if the motorcycle tips or falls.

GENERAL SPECIFICATIONS

2010 Cross Roads / Cross Country Specifications

CAPACCITIES\&ddIMENSIO		Cross Roads	Cross Country
	Oil Capacity	5.0 Qt ((4.75 ltr$)$ (Approximately 4.5 qts . or 4.25 ltr at oil \& filter change)	
	Fuel Capacity	5.8 US Gal (22.0 itr) (1.0 U.S. gal / 3.8 ltr reserve)	
	Fuel Type / Octane Minimum	Premium Unleaded/91 Octane	
	Dry Weight	745 lbs (338 kg)	765 lbs (347 kg)
	Wet Weight	$780 \mathrm{lbs}(354 \mathrm{~kg}$)	800 lbs (363 kg)
	Gross Vehicle Weight Rating	1360 lbs . (617 kg)	
	Gross Axle Weight Rating	Refer to Manufacturer Information label on frame of vehicle (left side of steering head)	
	Maximum Load	Subtract Wet Weight from GVWR or refer to Rider's Manual. Never exceed GWWR	
	Overall Length	104.4 in . (265.0 cm)	
	Overall Width	36.0 in . (91.4 cm)	39.2 in . 999.5 cm)
	Overall Height	$56.3 \mathrm{in} .(143.0 \mathrm{~cm})$	53.2 in . (135.1 cm)
	Seat Height	$26.3 \mathrm{in} \mathrm{(} 66.8 \mathrm{~cm}$)	
	Ground Clearance	$5.8 \mathrm{in} \mathrm{(14.8} \mathrm{cm)}$	
	Total Storage Volume	21.3 gallons (80.6 liters) See Saddlebag Warning (inside right saddlebag lid)	
	Passenger Capacity	1	
	Wheelbase	65.7 in (166.9 cm)	
	Rake / Trail	29 Degrees / 5.6 in. (14.2 cm)	
	Engine Type	VICTORY Freedom ${ }^{\text {® }} \mathrm{V}$-Twin	VICTORY Freedom ${ }^{*} \mathrm{~V}$-Twin
	Engine Configuration	$50^{\circ} \mathrm{SOHC}$ V-Twin 4 Stroke	$50^{\circ} \mathrm{SOHC}$ V-Twin 4 Stroke
	Engine Displacement	1731cc/ 106 cubic inch 6 speed (106/6 engine)	
	Engine Cooling System	Air/ Oil	
	Compression Ratio	9.4:1	
	Compression Pressure	210-225 psi (1448-1551 kPa)	
	Valve Train	4 Valves per cylinder. Hydraulic Lifters \& Cam Chain Adjusters (No Adjustment)	
	Bore x Stroke	$101 \times 108 \mathrm{~mm}$	
	Idle Speed / Fast Idle Speed	NOT ADJUSTABLE - ECM Controlled by IAC (Spec Idle Speed is $950+/-100$ RPM)	
	Fuel System / Throttle Body Bore Size	Closed Loop Sequential Electronic Fuel Injection / Dual Bore 45 mm	
	Exhaust System Type	Split Dual Exhaust With Crossover	
	Lubrication System	Wet Sump	
	Spark Plug Type (Gap)	NGK DCPR6E (. $032 \mathrm{in} . / .8 \mathrm{~mm}$)	
	Dry Weight (Engine Approximate)	$265 \mathrm{lbs} .(120 \mathrm{Kg}$)	
B	Brake Type (Front / Rear)	Disc / Disc	
A	Front Brake	Dual 300x5mm Floating Disc / 4 Piston Calipers	
E	Rear Brake	Single 300x7mm Floating Disc/2 Piston Caliper	

Specifications may change with the addition of custom order options and/or accessories. Polaris Sales inc. reserves the right without prior notice to discontinue at any time at its discretion any of the items herein or change specifications or designs without incurring any obligation to the customer.

2010 Cross Roads / Cross Country (cont.)

		Cross Roads	Cross Country
	Transmission Type	Manual, 6 Speed Constant Mesh with True Overdrive	
	Clutch Type	Wet, Multi-Plate, Diaphragm Spring	
	Primary Drive Type	Wet, Gear Drive w/ Torque Compensator	
	Primary Reduction Ratio	1.5:1	
	Final Drive Type / Belt Width / Final Drive Ratio	Carbon Fiber Reinforced Belt / 28mm / 2.12:1	
	Gear Shift Pattern	1 Down, 5 Up	
	Internal Gear Ratios 1st	3.15:1	
	2nd	2.03:1	
	3 rd	1.53:1	
	4th	1.24:1	
	M \square 5th	1:1	
	6th	84:1	
	Front Wheel (Size / Type)	Cast or Billet / 3.00×18 (inch)	
	Rear Wheel (Size / Type)	Cast or Billet 5.00×16 (inch)	
	Front Tire	Dunlop Elite 3-130/70R18 63H Radial	
	Rear Tire	Dunlop Elite 3-180/60R16 M/C 80H Radial	
	Minimum Tread Depth	. 063 in ((1.6 mm)	. 063 in. (1.6 mm)
	Front Type	Inverted Telescopic Cartridge Fork (TYPE 2 KYB)	
	Front Travel	$5.1 \mathrm{in} .(13 \mathrm{~cm})$	
	1 Front Tube Diameter	43 mm (1.7 in.)	43 mm (1.7 in.)
N	N Rear Shock Type	Single, Monotube Air Adjustable Shock	Single, Monotube Air Adjustable Shock
	Rear Swingarm Type	Cast Aluminum with Constant Rate Linkage	
	Rear Travel (inches)	4.7 in (12 cm)	
L	Headlamp	High H-11 55W / Low: H-11 55W	
1	HID Headlamp (If equipped)	High H-11/ Low. D1SR	
G	Turn Signal Lamp	Non-Serviceable LED	
T	Brake / Tail / License Plate Lamp	Non-Serviceable LED	
5	Alternator/Battery	50 amp max output / 12V 18AH 310 CCA / Yuasa YTX20HL	
	Turn Signal / Horn	10 amp fuse	
F	Chassis	20 amp fuse	
U	Engine	15 amp fuse	
S	Fuel Pump / Ignition Coil	15 amp fuse	
E	Ignition	10 amp fuse	
S	Lights	20 amp fuse	
	Circuit Breakers	See fuse box label (Chapter 2)	
	Fuel Type	Premium Unleaded / 91 Octane Minimum	
F	Fuel Pump Pressure	3.51 BAR (351 kPa) (51 psi)	
U	Fuel Pump Volume (Approx. @ 12V)	60 liters / hr (500 ml or $16.9 \mathrm{oz} /$.30 seconds) ($0.26 \mathrm{gal} / \mathrm{min}$)	
E	Fuel Level Sensor Resistance	Empty: 250 Ohms / Full: 50 Ohms	
L	Fuel Pump Current Draw	Less than 5.0 Amps	
	Fuel Injector Resistance	11.4-12.6 Ohms	

Specifications may change with the addition of custom order options and / or accessories. Polaris Sales inc. reserves the right without prior notice to discontinue at any time at its discretion any of the items herein or change specifications or designs without incurring any obligation to the customer.

1.6

VEHICLE LOADING

GROSS VEHICLE WEIGHT RATING (GVWR)

A. warning

Exceeding the gross vehicle weight rating of your motorcycle can reduce stability and handling and could cause loss of control. NEVER exceed the gross vehicle weight rating of your motorcycle.

The maximum load capacity of your motorcycle is the maximum weight you may add to your motorcycle without exceeding the GVWR. This capacity is determined by calculating the difference between your motorcycle's gross vehicle weight rating and the wet weight.

Refer to the specification section of this manual or the Manufacturing Information / VIN label on the motorcycle frame for model-specific information. Refer to Information label section in this manual (page 1.9) for location on the motorcycle.

When determining the weight you will be adding to your motorcycle, and to ensure you do not exceed the maximum load capacity, include the following:
-operator body weight
-passenger body weight
*weight of all riders' apparel and items in or on apparel
-weight of any accessories and their contents
*weight of any additional cargo on the motorcycle

VEHICLE INFORMATION

VEHICLE IDENTIFICATION NUMBER (VIN)

See "VIN NUMBER / MANUFACTURER LABEL" on page 1.9. for location on the vehicle.

MODEL NUMBER

See "VIN NUMBER / MANUFACTURER LABEL" on page 1.9. for location on vehicle.
Chassis:
Chassis:
$A=$ Vegas 8-Ball
$B=$ Hammer 8-Ball
$C=$ Kingpin
$D=$ Cross Country
$E=$ Cross Roads
$H=$ Hammer
$K=$ Kingpin Low, 2009
$L=$ Vegas Low, 2010 Vegas
$P=$ Kingpin 8-Ball
$S=$ Victory Vision
$V=$ Victory Vision 8-Ball
$X=$ Jackpot

VIN NUMBER / MANUFACTURER LABEL

The Manufacturer Information Label (A) contains the following:

- Vehicle Identification Number (VIN) (also stamped into frame on right side of the steering head).
- Gross Vehicle Weight Rating
- Gross Axle Weight Rating
- Tire and Wheel Information
- Date of Manufacture

VECI / NECI / TIRE INFORMATION LABELS

The Vehicle Emission Control Information (VECI) and Noise Emission Control Information (NECI) labels are located at (B).

ENGINE NUMBER LOCATION

The engine number (C) is stamped into the right crankcase boss and identifies engine model and serial number.

KEY IDENTIFICATION NUMBER

The key identification number (D) is stamped on a tag attached to the key ring. If key and identification number are lost or misplaced, the lock set must be replaced.
Key blanks are available from Victory. Locksmiths familiar with the motorcycle industry will be able to cut a replacement key with an I.D. number and a key blank.

SADDLEBAG WARNING LABEL

Saddlebag Warning Label (E).

REAR SHOCK AIR PRESSURE LABEL
Rear Shock Air Pressure Label (F).

SPECIFICATIONS / GAUGE / AUDIO

PUBLICATIONS \& TECHNICAL LITERATURE

PUBLICATION PART NUMBERS

Some Victory publications, such as Owner's Manuals and Parts Books are available on-line and can be downloaded from the Victory motorcycles web site (http://www.polarisindustries.com/en-us/Victory/). Click on the Riders pull down menu and select Manuals and Parts.

Service Manuals can be purchased through any authorized Victory motorcycle dealer. The part numbers are listed in the following table. Some manuals are available for purchase on-line at www.purepolaris.com.

VICTORY SERVICE MANUAL PART NUMBERS	
2002-2006 Classic \& Touring Cruiser	9919632
2003-2006 Vegas ${ }^{*} /$ Kingpin ${ }^{*}$ / Vegas 8 -Ball ${ }^{*}$ / Ness Signature Series Vegas ${ }^{*}$ \& Kingpin ${ }^{*}$	9920337
2005-2006 Hammer ${ }^{\text {/ }} 2006$ Vegas Jackpot ${ }^{3}$	9920340
2007 Vegas ${ }^{*} /$ Vegas 8 -Ball ${ }^{*} /$ Kingpin $^{*} /$ Kingpin Tour ${ }^{\text {s }}$	9920837
2007 Hammer ${ }^{3}$ / Hammer5 S Vegas Jackpot* / Ness Signature Series Vegas Jackpot ${ }^{\text { }}$	9920838
2008 Vegas ${ }^{*} /$ Vegas 2-Ball ${ }^{\text {T}}$ / Vegas Low ${ }^{\text {™ }} /$ Kingpin $^{*} /$ Kingpin Tour ${ }^{8} /$ Kingpin 8 -Ball ${ }^{8}$	9921242
2008 Hammer ${ }^{5}$ / Hammer ${ }^{5}$ S / Vegas Jackpot ${ }^{*}$ / Ness Signature Series Vegas Jackpot ${ }^{\text { }}$	9921247
2009-2010 Vegas ${ }^{\text {s }}$, Kingpin ${ }^{\text {* }}$, Hammer ${ }^{\text { }}$ / Vegas Jackpot ${ }^{\text {s }}$	9922432
2008-2010 Victory Vision ${ }^{\text {² }}$	9922444

MATERIAL SAFETY DATA SHEET (MSDS)

To review or print a Material Safety Data Sheet for Victory maintenance products, chemicals or lubricants: DEALERS: Visit www.polarisdealers.com / news forms \& links / pure polaris OR contact Dealer Support NON-DEALERS: Please contact Polaris Customer Service at: 1-888-704-5290 (French speaking 1-204-925-7100)

REFINISHING

VICTORY TOUCH-UP \& REFINISHING PAINT

Service Paint products are available in three different sizes and applications. Some paint colors require up to 3 components to create a color. Prices subject to change without notice. Dealer is responsible for freight on paint and paint products.
Detailed paint ordering information is available on the dealer web site (www.polarisdealers.com).
.6 ounce bottle: (Order Multiple of 2) For brush touch-up of small nicks.
10 ounce aerosol can: (Order Multiple of 2)
Apply light even coats for best results. Recoat time is from 30-60 minutes or after 4 days of drying to prevent lifting.
Quarts: (Sold as each)
For repaint of properly prepared plastic components or metal substrates.
Paint is a high quality acrylic urethane manufactured by U.S. Paint.

Mix as indicated on back of paint can. Paint can be recoated after paint is tack free or has "flashed off".
Paint finish may be wet sanded and buffed after coating has cured.

How to order:

Authorized Victory Dealers only. Place your order via the dealer web site at:
www.polarisdealers.com / News Forms \& Links / Pure Polaris
NOTE: There will be a $\mathbf{2 5 \%}$ service fee charged for all returns. Polaris dealer will be responsible for return freight

VICTORY DETAIL \& FINISH RESTORER KITS AND PRODUCTS

A Detail Kit (polish, wax, and dressing) and a Restore Kit (polish, and swirl / scuff remover) is available from the Victory parts department for painted surface protection and to remove minor surface imperfections.

Visit www.purevictorypolishes.com for a complete list of genuine Pure Victory detailing products.

Detail Kit: 2872195 Includes Non-Abrasive Wash, Swirl Remover / Polish, Polywax Final Finish, Vinyl / Rubber Protector, Applicator and Cloth.
Restore / Polish: 2872192 (12 oz. Aerosol)

PAINTING TERMS

The following terms describe the general operations referred to in the Paint Color Code chart on page 1.12.
E-Coat (Factory Applied): This material is used as a rust protection. It is also used to form a bond between bare metal and the primer or base coat.
Primer: Primer is necessary when applying some colors such as Flame Yellow, Sonic Blue, Solar Red, etc. The purpose of a primer coat is to prevent bleed-through or transparency in subsequent color coats. Full-hide colors (such as black) do not require primer.
Base Coat: A color paint layer applied under another color or under the clear topcoat to improve color matching and consistency.
Top Coat: Outermost layer of paint or clear coat.

PAINT COLORS BY MODEL

The 8th Digit of the model number (either a C, D, L, or U) designates the Series:
($\mathrm{C}=$ CANADA, $\mathrm{D}=$ Domestic (49 State), $\mathrm{E}=$ Europe, $\mathrm{L}=$ CALIFORNIA, and $\mathrm{U}=$ United Kingdom.
The 9th letter of the model number designates the color.

VICTORY CROSS ROADS ${ }^{\text {Tu }}$ MODEL YEAR 2010	
Model Number	Model
V10EB36CA, DA, LA	VICTORY CROSS ROADS, Cruiser Black
V10EB36CL, DL, LL	VICTORY CROSS ROADS, Solid Midnight Cherry
VICTORY CROSS COUNTRY	
V10DB36CA, DA, LA	VICTORY CROSS COUNTRY, Cruiser Black
V10DB36CL, DL, LL	VICTORY CROSS COUNTRY, Solid Midnight Cherry
V10DB36CI, DI, LI	VICTORY CROSS COUNTRY, Cruiser Black w/ Skull Graphic

PAINT COLOR CODES

For current information Victory Dealers can go to www.polarisdealers.com/News, Forms, and Links. Enter PAINT CODES in the search box.

PAINT COLOR:	PAINT CODE	NOTES
Midnight Cherry	P-554	
Cruiser Black	P-266	
Tinted Black	P-585	
Cruiser Black \& Graphite w/ Skull Graphic	P-1293	
Metallic Flake Additive	METALLIC	Add vial of flake to quart of clear base
Clear	C	
Clear Metallic	CM	Clear with metal flake added
UNDERCOATERS (Base Coat Only)	WU, OWU, PWU, WVU	WU=White Undercoater; OWU=Off-White Undercoater; PWU=Pearl White Undercoater; WU=Victory Violet Undercoater

BREAK IN PERIOD

BREAK-IN PROCEDURE

There is never a more important period in the life of a new Victory motorcycle than the period between zero and 500 miles $(805 \mathrm{~km})$. A Victory motorcycle is manufactured using the best possible materials and manufacturing techniques, but the final machining process is the break-in. During break-in period, many parts in the engine wear and polish to correct operating clearances. During this time, the operator should:

- Avoid prolonged full throttle operation.
- Avoid operation which might result in excessive heating of the engine.

The general break-in guidelines are as follows:

Miles/km		Throttle Position
$0-90$ miles	$0-1 / 3$	Avoid prolonged operation above $1 / 3$ throttle. Stop engine and let it cool following every hour of operation. Vary speed of motorcycle. Do not operate machine at one set throttle position.
$90-300$ miles	$0-1 / 2$	Avoid prolonged operation above $1 / 2$ throttle. Stop engine and let it cool following every hour of operation. Vary speed of the motorcycle. Do not operate machine at one set throttle position.
$300-500$ miles	$0-3 / 4$	Avoid cruising speeds above $3 / 4$ throttle.
500 miles	Replace the engine oil and engine oil filter. Perform 500 mile service on the machine. See chapter 2 for more information.	
$500+$	Avoid prolonged full-throttle operation. Vary the engine speed occasionally. Follow the pre- ride inspection outlined in the owner's manual.	

EMISSIONS

EMISSION CONTROL SYSTEMS

The U.S. Environmental Protection Agency and California Air Resources Board (CARB) require manufacturers to certify that their motorcycles comply with applicable exhaust emissions standards during their useful life, and that motorcycles built after January 1, 1983 comply with applicable noise emission standards for one year or $6,000 \mathrm{~km}(3,730 \mathrm{mi})$ after the time of sale to the ultimate purchaser, when operated and maintained according to the instructions provided.

EMISSION SOURCES

An internal combustion engine produces carbon monoxide and hydrocarbons during operation. Hydrocarbons must be controlled because under some conditions hydrocarbons react with sunlight to produce photochemical smog. Carbon monoxide must be controlled because it is toxic.

EXHAUST EMISSION CONTROL

Victory Motorcycles have an electronic engine management system which controls fuel delivery and ignition timing to control hydrocarbon and carbon monoxide emissions. Follow the Periodic Maintenance Interval Table on page 2.4 and inspect the emission control system as outlined in this manual. No adjustments can be made to the EEC system.

NOISE EMISSION CONTROL SYSTEM

Tampering with Noise Control Systems is Prohibited. Federal law prohibits the following acts or causing thereof:

1. The removal or rendering inoperative by any person other than for purposes of maintenance, repair or replacement, any device or element of design incorporated into the motorcycle for the purpose of noise control prior to its sale or delivery to the ultimate purchaser or while it is in use, or
2. The use of the motorcycle after such device or element of design has been removed or rendered inoperative.

Among those acts presumed to constitute tampering are the acts listed below:

1. Removal of, or puncturing the muffler, baffles, header pipes or any other component which conducts exhaust gases.
2. Removal or puncturing of any part of the intake system.
3. Lack of proper maintenance.
4. Replacing any moving part of the motorcycle or parts of the exhaust / intake system with parts other than those specified by the manufacturer.

CRANKCASE EMISSION CONTROL

The crankcase emission control system is comprised of a closed system that routes crankcase emissions through the air cleaner into the combustion chamber.

EVAPORATIVE EMISSION CONTROL

California models are equipped with an Evaporative Emissions Canister (A) mounted under the rear fender. Activated charcoal inside the canister temporarily stores fuel vapor from the fuel tank vent system. The Electronic Control Module (ECM) opens a canister purge valve that connects the charcoal canister to the intake tract (when conditions are correct) to purge the canister of vapors absorbed by the charcoal. Refer to Chapter 5 for system diagram and Chapter 2 for maintenance.

1.14

SPECIAL SERVICE TOOLS

GENERAL / PRECISION MEASURING TOOLS

TOOL	PART NUMBER
Bearing \& Seal Driver Set	PV-43558
Bodywork Removal Tool Set	PV-49955
Bore Gauge Set, 50-100mm	PV-3017
Decal, Service Bulletin Completion	(Order from Victory Parts Dept.)
Dial Caliper (Metric, 0-150mm)	PV-26900-7
Dial Caliper (Electronic Conversion. English 0-6" / Metric 0-150mm)	PV-39776
Dial Indicator, Adjustable (Metric. 10mm travel)	PV-26900-12
Dial Indicator Stand, Flexible. Magnetic Base	PV-34481
Engine Ear Listening Device	PV-39565
Feeler Gauge Set	PV-26900-8 or PV-26900-9
Outside Micrometer (0-25 \& 25-50mm)	PV-3006, PV-3007
Outside Micrometer Set (0-100mm)	PV-3009
Small Hole Gauge Set	Commercially Available
Straight Edge, Precision	PV-34673
Surface Plate	Commercially Available
Telescoping Gauge Set	PU-45423
Torque Wrench (3/8" Drive 0-50 in-lb. beam type)	PV-43543
Torque Wrench (1/2" Drive 0-150 lb-ft. beam type)	PV-43552
Torque Wrench (3/8" Drive 15-100 lb-ft. click type)	PV-43564

TUNE UP \& MAINTENANCE TOOLS

TOOL	PART NUMBER
Belt Tension Gauge	PV-43532
Belt Tension - Sonic Tension Meter	Commercially available
Cylinder Leakdown Tester	PV-35667-A
Compression Gauge Set	PV-33223
Oil Pressure Gauge Set	PV-43531
Vacuum Brake Bleeder	PV-50204
Front Brake Lever Reserve Inspection Adapter	PV-50104

ELECTRICAL TOOLS

TOOL	PART NUMBER
Ammeter Inductive Clamp for Fluke $73^{\text {TM }}$ Multimeter	PV-39617
Cruise Control Jumper Harness (Diagnostic) Kit	PV-49358
Electrical Connector Test Adapter Kit	PV-43526
Inductive Timing Light	PV-43537
Multimeter, Fluke $73^{\text {TM }}$	PV-43546

ENGINE, CLUTCH, \& TRANSMISSION TOOLS

TOOL	PART NUMBER
Clutch Shaft Bearing Support (for clutch shaft installation)	PV-47331
Crankcase Assembly Tool (Crankcase Installer)	PV-46299 (Must be used with PV-45030) and Adapter (Extension) PVX-47429
Crankcase Assembly Tool Adapter	PVX-47429
Crankshaft Bearing Protector	PV-47207
Crankshaft Rotation Tool	PV-48736
Crankcase Separator (Crankcase Removal)	PV-47332-A
Engine Hoist or Lift	PV-43502-A
Engine Lock Tool	Commercially Available
Engine Stand	PV-43533
Flywheel Puller	PV-45028
Mainshaft (Clutch Shaft) Holder	PV-43505
Crankcase Installation Tool (Crankcase Assembly)	Includes PV-43570-1 Pliers, PV-43570-2 Band
(3 5/8' to 3 7/8")	

STEERING \& SUSPENSION TOOLS

TOOL	PART NUMBER
Blind Bearing Remover Set	PV-43551
Wheel Bearing Service Set	PV-49462
Fork Spring Compressor	PV-49463
Cartridge Shaft Extension	PV-49453
Cartridge Holder	PV-49452
Fork Oil Level Gauge	PV-59000-A
Fork Seal Driver 43mm, Inverted Forks	PV-47035
Fork Seal Guide Tool, 43mm	PV-47037
Steering Bearing. Wheel Bearing Installation Set	PV-43515
Steering Stem Bearing Adjustment Socket	PV-43508
Steering Stem Bearing Spanner Wrench	PV-43509
Shock Spring Compressor	PV-43571

1.16

WHEEL \& TIRE TOOLS

TOOL	PART NUMBER
Air Pressure Gauge	PV-48909 (Victory Air Pump \& Gauge) Or Commercially Available Tire Pressure Gauge
Tire Bead Breaker (May be part of the tire removal equipment being used)	Commercially Available
Tire Mounting Lubricant	Commercially Available
Tire Removal Equipment	Commercially Available
Rim Protector	PV-43536
Wheel Balancing/Truing Stand	Commercially Available

FUEL SYSTEM \& FUEL INJECTION TOOLS

TOOL	PART NUMBER
(See Chapter 5 for more information)	
Victory/Polaris Diagnostic Tool Kit	PU-46085-A
	Digital Wrench Software: PU-48731
	Standard Interface Cable: PU-47151
	Victory Adapter: PV-46085-2
	SmartLink Interface Kit: PU-47471
Electrical Connector Test Adapter Kit	PV-43526
Fuel Pressure Gauge	PU-43506-A
Fuel Pressure Gauge Adapter	PV-48656
Fluke 73 Digital Multi-Meter or Fluke 77 DMM	PV-48656 (Fluke 77 - PV-43568)
Laptop Computer (Refer to diagnostic software user manual or HELP section for minimum specifications	Commercially Available
Relay Jumper (to bypass fuel pump relay and run pump)	PU-49466

TOOL ORDERING INFORMATION

Order Special Service Tools from SPX Corporation (Phone 800-328-6657 / FAX 586-578-7375) or use the link on the Victory Dealer Web site.

If you are not a Victory dealer use the phone or FAX number listed above or visit http://polaris.spx.com/

TRANSPORTING, ELEVATING, AND SECURING THE MOTORCYCLE

GENERAL GUIDELINES

4 warning

Care should be taken to be sure the motorcycle will not tip or fall while elevated. Severe personal injury or death could occur if the motorcycle tips or falls.

If you must transport the motorcycle or secure it to a lift table:

- Use a truck, trailer, or lift table designed or equipped properly for motorcycles. Review truck, trailer or lift manufacturer's recommendations.
- Do not tow the motorcycle with another vehicle, as towing will impair the motorcycle's steering and handling, which can cause a loss of control.
- Position and restrain the motorcycle so it remains upright on the truck, trailer, or lift table as gasoline may leak out of the fuel tank vent if the motorcycle is transported at extreme angles. Gasoline is a fire hazard and it can also damage the motorcycle's finish.
- Do not restrain the motorcycle using the handlebars. Place soft tiedown straps around lower triple clamp and fork tube, clear of any cables, wire harness, or other parts.
- Secure the rear of the motorcycle with tiedowns around the swingarm, being careful to avoid brake lines, exhaust, drive belt, or drive belt guards.
- The motorcycle can be elevated by placing a stable, flat platform jack or lift mechanism on a firm flat surface and lifting under the engine crankcase. The platform should be a minimum 12 inches square, and clear of any components under the motorcycle. DO NOT attempt to lift the motorcycle without properly securing it with straps.

1.18

KEY SWITCH

IGNITION KEY

The ignition key operates the ignition switch and saddle bag locks.

IGNITION SWITCH

The ignition switch has 3 positions - OFF, ON, and PARK.

Ignition Switch Function

OFF	No electrical circuits are active. Ignition key can be removed from the switch.
ON	All electrical circuits are energized and the ignition key cannot be removed. The headlight, tail light, and instrument lights illuminate. The engine stop/run switch must be in the RUN position to start the engine or activate the turn signals and other electrical features.
PARK	Tail light, indicator lights, and license plate light illuminate. The radio can be operated and instrumentation is active. The emergency flashers can be activated and the ignition key can be removed. You must push the ignition key into the switch to select the PARK position.

INSTRUMENT CLUSTER - CROSS ROADS

SPEEDOMETER (Cross Roads)

(A) The speedometer displays current speed in either miles per hour (MPH) or kilometers per hour (km / h).

MULTI FUNCTION DISPLAY (MFD) (Cross Roads)

(B) Use the MODE button (page 1.26) to toggle through the modes of the MFD.

MODES AVAILABLE:

- Odometer
- Trip Odometer (Trip 1 and Trip 2)
- Clock
- Fuel Level
- Engine Speed (RPM)
- Trip Hours Meter
- DC Voltage

(C) Indicator Lamps

Each above function and indicator lamp is described on following pages.

ODOMETER (Cross Roads)

The odometer displays total distance traveled and cannot be reset.

TRIP ODOMETER (Cross Roads)

The ignition switch must be ON or in the PARK position to access trip odometers. Trip odometers display total distance traveled since being reset. Use the MODE button (page 1.26) to toggle between odometer, trip 1 and trip 2. To reset trip odometer:

- Turn key to ON or PARK. Toggle trip meter to Trip 1 or 2.
- Press and Hold MODE button until trip meter resets to zero.

FUEL LEVEL (Cross Roads)

The fuel level mode displays graphics between empty (E) and full (F) to indicate the fuel level.

ENGINE SPEED (Cross Roads)

Engine speed is displayed in revolutions per minute (RPM) of the MFD when selected.

CLOCK (Cross Roads)

NOTE: The clock must be reset any time the battery is disconnected or discharged.

Setting the clock:

1. Turn the key to ON or PARK. Toggle to the clock display using the MODE button.
2. Press and hold the MODE button until the hour segment flashes, then release the button.
3. With the segment flashing, tap the MODE button to advance to the desired setting.
4. Press and hold the mode button until the next segment flashes. Release the button.
5. Repeat Steps 3 and 4 twice to set the 10 -minute and 1 -minute segments. After completing the 1 -minute segment, Step 4 will save the new setting and exit the clock mode.
6. Turn the key OFF.

DC VOLTAGE (Cross Roads)

The volt meter displays battery voltage. If the engine is not running, approximate battery voltage displays. If the engine is running, approximate charging voltage displays.

TRIP HOURS METER (Cross Roads)

The trip hours meter displays total hours of operation since being reset. To reset the trip hours meter, toggle to the hours meter display, then press and hold the mode button until the meter resets to zero.

ERROR MESSAGE (Cross Roads)

Certain conditions will cause an error message to display in the screen. See Chapter 5 or Chapter 19 for diagnostics.

Message	Screen	Indicates
ERROR	Fuel Level	Fuel sensor disconnected / shorted
LO	DC Voltage	Voltage below 11.0 volts for more than 10 seconds
OV	DC Voltage	Voltage above 15.0 volts for more than 10 seconds
ERROR	ALL	Checksum error (gauge malfunction)

INDICATOR LAMPS (Cross Roads)

Indicator Lamp Function (Cross Roads)

Neutral	Illuminates when transmission is in neutral (and Key is in ON)
High Beam	Illuminates when the head lamp switch is set to HIGH BEAM.
(L) (R) Turn Signal	Flashes when left, right, or both turn signals (hazard) are active. If a bulb fails, or if there is a short circuit in the signal system, the lamp flashes at more than twice the normal rate.
Low Oil Pressure	The Low Oil Pressure indicator illuminates when the ignition switch is in the ON position and the engine is off, indicating that the indicator circuit is functioning properly. This lamp also illuminates if engine oil pressure drops below safe operating pressure. If this lamp illuminates while the engine is running, turn the engine off as soon as safely possible and check the oil level. If the oil level is correct and the lamp remains on after the engine is restarted, turn the engine off immediately.
Low Fuel	The Low Fuel indicator illuminates when approximately 1.0 gallons (3.8 liters) of fuel remains in the fuel tank.
Check Engine	The Check Engine message appears in the MFD. The message appears momentarily when the ignition switch is in the ON position and the engine is off. This indicates proper function. If this message flashes in the display while the engine is running, diagnose the problem immediately. If abnormal sensor or engine operation is detected, the message will remain as long as the fault condition exists. Retrieve error codes for diagnosis. Refer to page 1.23 for more information about error codes.

INSTRUMENT CLUSTER (CROSS COUNTRY)

The instrument cluster includes the speedometer (A). tachometer (B), fuel gauge (C), volt meter (D), indicator lamps (E), and multi-function display (F).

SPEEDOMETER (Cross Country)

(A) The speedometer displays current speed in either miles per hour (MPH) or kilometers per hour (km / h).

TACHOMETER (Cross Country)

(B) The tachometer displays engine speed in revolutions per minute (RPM). A red line on the face indicates maximum safe engine RPM.

A. WARNING

Excessive engine speed can cause engine damage or failure, which could result in serious injury or death. Do not allow engine speed to exceed the red line.

FUEL GAUGE (Cross Country)

(C) The fuel gauge displays fuel level. The key must be in the ON or PARK position. For most accurate reading, sit on the motorcycle and bring it to the upright position. To change display units (metric) see page 1.25 .

VOLT METER (Cross Country)

The volt meter displays battery voltage when the key is in the ON position. If the engine is not running, approximate battery voltage displays. If the engine is running, approximate charging voltage displays.

INDICATOR LAMP DISPLAY (Cross Country)

The indicator lamps are located on the upper display in the center of the instrument panel.

Indicator Lamp Function (Cross Country)

Neutral	Illuminates when transmission is in neutral and ignition key is in the ON or PARK position.
High	Illuminates when the head lamp switch is set to HIGH BEAM.
Beam	Thluminates momentarily when the ignition switch is in the ON position and the engine is off. This indicates proper function. The light will remain on if the Tip Over Sensor (TOS) shuts down the engine. If abnormal sensor or engine operation is detected the light will remain on as long as the fault condition exists. Retrieve the error codes for diagnosis (page 1.23).
Engine	The Low Oil Pressure indicator illuminates when the ignition switch is in the ON position and the engine is off, indicating that the indicator circuit is functioning properly. This lamp also illuminates if engine oil pressure drops below safe operating pressure. If this lamp illuminates while the engine is running, turn the engine off as soon as safely possible and check the oil level. If the oil level is correct and the lamp remains on after the engine is restarted, turn the engine off immediately.
Pressure	

Indicator Lamp Function (Cross Country)

(L) (R)	One arrow flashes when the corresponding turn signal is activated. Both flash when the hazard is activated. If a bulb fails, or if there is a short circuit in the signal system, the lamp flashes at more than twice the normal rate.
Turn Signal	The Low Fuel indicator illuminates when approximately 1.0 gallons (3.8 liters) of fuel remains in the fuel tank.
Low	This lamp illuminates when battery voltage is low. Inspect battery and charging system. See Chapter 16.
Battery	Cruise Control indicator illuminates when cruise control power is ON and a set speed is selected. Review Cruise Control Safety \& Operation in the Rider's Manual before operating the Cruise Control.
Control	

MULTI FUNCTION DISPLAY (MFD) (Cross Country)

Use the MODE button (page 1.26) to toggle through the modes of the MFD. To change display units (metric) see page 1.25. Permanent and trip computer modes are described on the following pages.

PERMANENTLY DISPLAYED MODES:

- Clock (A)
- Gear Position (B)
- Ambient Temperature (C)

TRIP COMPUTER (D) MODES*:

- Odometer
- Trip Odometer 1 \& $2^{* *}$
- Average Fuel Economy**
- Average Speed**
- Fuel Range
- Instantaneous Fuel Economy
- Trip Hours Meter**
**Press and hold the mode button to reset.

ENGINE ERROR CODES (Cross Country)

The error screen displays only when the check engine (MIL) light is on or when it goes on and off during one ignition cycle (key on / key off cycle). Error codes are not stored. When the key is turned off, the code and message is lost, but it will reappear if the fault occurs again after starting the engine.

If the MIL light illuminates, retrieve the error codes from the display or connect Digital Wrench to view historic and current fault codes (Chapter 5).

To retrieve error codes from the display:

1. If the error codes are not displayed, use the mode button to toggle until "Err" displays in the clock area.
2. Record the three code numbers displayed in the gear position, temperature, and odometer displays.
3. Refer to Chapter 5 for a list of codes.

CLOCK (Cross Country)

The clock is displayed with the key in the ON or PARK position.

The clock must be reset any time the battery is disconnected or discharged.

To change from 12 hour clock to 24 hour clock, see page 1.25 .

To set the clock:

NOTE: If the LOW FUEL light is flashing, the display will not enter the CLOCK SET mode.

Setting the clock:

1. Turn the key to ON or PARK. Use the MODE button (page 1.26) to toggle the display to ODOMETER.
2. Press and hold the MODE button until the hour segment flashes, then release the button.
3. With the segment flashing, tap the MODE button to advance to the desired setting.
4. Press and hold the mode button until the next segment flashes. Release the button.
5. Repeat Steps 3 and 4 twice to set the 10 -minute and 1 -minute segments. After completing the 1 -minute segment, Step 4 will save the new setting and exit the clock mode.
6. Turn the key OFF.

TRIP INFORMATION (Cross Country)

Average speed, average fuel economy, and a trip timer are displayed individually using the MODE button. Average fuel economy data is most accurate when taken over multiple trips or multiple tanks of fuel.

To RESET the above items, tap MODE button until desired data item is displayed, then press and HOLD the MODE button until the item resets.

The Trip Timer accumulates time only when the ignition switch is in the ON position.

GEAR POSITION (Cross Country)

(2) The number of the current transmission gear is displayed with the key in the ON position and the Stop/Run switch in Run. The letter "N" is displayed in Neutral. "R" in Reverse (if equipped).

TRIP ODOMETER (Cross Country)

(3) The trip odometer shows total miles traveled since the trip odometer was reset. Use the MODE button (page 1.26) to toggle between odometer and trip meter. To reset the trip meter:

- Turn the key ON and toggle to the trip meter to TRIP 1 or 2.
- Hold the MODE button until the trip meter resets.
- To change from miles to kilometers see page 1.25 .

TEMPERATURE (Cross Country)

(4) Current ambient air temperature is displayed with the key in the ON or PARK position.

ODOMETER (Cross Country)

(5) The odometer displays total mileage of the vehicle in miles or kilometers. To change unit display from miles to kilometers see page 1.25

CHANGING INFORMATION DISPLAY UNITS (Cross Country)

Standard and Metric Information Display options are available as indicated in the table:

	Standard Display	Metric Display
DISTANCE	$\mathrm{Mi} /$ Hour	$\mathrm{Km} /$ Hour
FUEL UNITS	U.S. Gal	I (Imperial Gallons) or Liters
TEMP	F°	C°
CLOCK	12 Hour	24 Hour

NOTE: To exit set-up mode at any time, wait 10 seconds and display will return to odometer.

1. Turn the key OFF.

Press and hold the MODE button (page 1.26) while turning the key to the ON or PARK position.
2. When the display flashes the DISTANCE setting, tap the mode button to advance to the desired setting.
3. Press and hold the mode button to save the setting and advance to the next display option.
4. Repeat the procedure to change remaining display settings.

CONSOLE SWITCHES (CROSS COUNTRY)

HAND GRIP HEATER SWITCH

Press rocker switch toward Hi or Low position, depending on the amount of heat required. Press rocker switch to middle position to turn grip heaters OFF.

LEFT HANDLEBAR SWITCHES

MODE BUTTON

The MODE button (A) is located on the front side of the left handlebar switch.

The MODE button is used to toggle through the various Information display items available, and to change the display units.

Refer to the individual display feature throughout this chapter for more information.

NOTE: If "Err" is displayed while toggling through the mode features, a system error has been logged in the ECM (the CHK ENG light may or may not be illuminated). Refer to Chapter 5 for more information.

HAZARD SWITCH (Emergency Flashers)

The Hazard switch (B) activates and de-activates emergency flashers. When emergency flashers are active, all turn signals flash.

HEADLAMP HIGH / LOW BEAM SWITCH

The headlamp high/low beam switch toggles the headlamp between high and low beam.

TURN SIGNAL SWITCH

With the ignition key in the ON or PARK position, the turn signal switch will activate the turn signals.

- Push the switch left to activate left turn signals
- Push the switch right to activate right turn signals
- To manually cancel either turn signal, push the switch straight in toward housing when the switch is in the center position.

If activated below $15 \mathrm{mph}^{*}(24 \mathrm{kph})$, the turn signals cancel automatically, shortly after the vehicle speed reaches 15 mph . If a signal is activated with vehicle speed above 15 mph , cancellation will occur based on distance traveled.

NOTE: If a signal is activated above 15 mph and vehicle speed drops below 15 mph , cancellation will occur shortly after speed again reaches 15 mph .
*The 15 mph speed is approximate.

TURN SIGNAL MOMENTARY FEATURE

When passing a vehicle or when changing lanes, you have the option of using the momentary feature built in to the turn signal auto-cancel system.
Push the turn signal switch in the direction you wish to turn and hold it in that position for at least 1 second. The momentary feature will activate and the signal will cancel when you release the switch.

STARTER INTERLOCK

The motorcycle is equipped with a starter interlock switch (A) that prevents the electric starter from operating when the transmission is in gear and the clutch is engaged (lever released), or if the Reverse lever is in the Reverse (Up) position (if equipped).

A. CAUTION

Never start the motorcycle in gear with the clutch disengaged unless you are properly seated with the front brake applied.

RIGHT HANDLEBAR CONTROLS

ENGINE STOP SWITCH

The engine stop/run switch completes or interrupts the ignition, starter, and fuel pump circuits.
Press RUN side of engine stop/run switch (RUN position). Press STOP side of switch to interrupt circuits and stop the engine. The engine should not start or run when the switch is in the STOP position. Use STOP/RUN switch to turn engine off under either normal or emergency conditions. Turn key OFF after the engine stops.
NOTE: The stop switch must be in the RUN position for turn signal operation.

ENGINE STARTER BUTTON

The starter button works only when STOP/RUN switch is in RUN position and transmission is in neutral (or clutch is disengaged).

FRONT BRAKE LEVER REACH ADJUSTMENT

Front brake lever "reach" or distance to the hand grip is adjustable. To adjust the front brake lever reach:

- Pull the lever away from the grip (1) and hold.
- Turn dial (2) to align a lower number with arrow (3) on lever to increase lever reach distance.

Turn the dial to align a higher number with the arrow on the lever to decrease reach distance.

AUDIO / COM / CRUISE CONTROL BUTTONS

The remote audio control buttons (if equipped) are mounted below the LH bar switch. Cruise control buttons (if equipped) are mounted below the RH bar switch. See page 1.28 for an overview of Audio System operation. Refer to Chapter 19 for Audio System and Cruise Control System diagnostic information.

RADIO / AUDIO SYSTEM

RADIO / AUDIO SYSTEMS OPERATION

The following pages describe basic operation and function of various Radio and Audio systems (if equipped) such as AM/FM/WX audio system, CB radio / intercom, XM ${ }^{*}$ radio, auxiliary and iPod ${ }^{\text {² }}$ audio or NAV MP3.
iPod is a registered trademark of Apple Inc.
XM is a registered trademark of XM^{*} Satellite Radio Inc.
Not all motorcycles are equipped with all components discussed in the audio section of this manual.

Refer to Chapter 19 (Electrical Systems) for diagnostics.

SOFTWARE UPDATES

Radio system software should be updated annually to ensure the best performance. Refer to Chapter 19 for Auxiliary Controller Reprogramming procedure using Digital Wrench diagnostic software.

RADIO FREQUENCIES

North America

- AM 520 to 1720 kHz
- FM 87.9 to 107.9 MHz
- WX 162.40 to 162.55 MHz

European

- FM 87.5 to 108.00 MHz
- MW 522 to 1602 kHz
- LW 144 to 288 kHz

AUDIO CONTROLS

U.S.A. Sources

- FM / AM / WX / XM Radio / AUX (NAV MP3, AUX or iPod)

European Sources:

- FM / MW / LW / AUX (NAV MP3, AUX, or iPod)

Mode Menu Options:

- Bass
- Treble
- Fader
- External Speakers
- Automatic Volume Control (AVC)
- CB Headset ENT Mode
- ICOM Volume
- CB Volume
- CB Local (LO) / Distant (DX)
- AM/FM Clear Preset
- Radio Data System (RDS)
- AUX Mode
- XM Clear Preset
- XM Display
- XM Category

LOWER LEFT HAND CONTROL

Some mode menu options have sub-menus. Sources and menu options will be displayed only for installed components.

1. Volume Button (System ON / OFF): Press VOL (+) to turn the audio system ON. Press VOL (+) to increase audio volume. Press VOL (-) to decrease volume. Press and hold to rapidly increase or decrease volume. When volume is decreased until OFF displays, continuing to press and hold volume (-) for two seconds will turn the radio off.
2. Tuner Button: Press and release TUNE (+) or TUNE $(-)$ to change radio stations or iPod tracks. Press and hold to automatically seek.
3. Mode Button: Press and hold the MODE button until the system enters the audio system mode menus. Then press and release the MODE button until the desired mode menu displays.
4. Memory Preset (PRE) Button: Press PRE to cycle through stored presets (page 1.32).

UPPER LEFT HAND CONTROL*

Operation of the left handlebar CB control is outlined in greater detail on the following pages.

1. PTT (Push to Talk): Press and hold top or bottom of PTT button to transmit (page 1.38).
2. Squelch: Press $S Q(+)$ or $S Q(-)$ to adjust $C B$ radio channel reception sensitivity (page 1.38).
3. COM: Press COM to turn the CB on or off. Press and hold COM to select a COM channel.
4. ICOM: Press ICOM to turn the driver/passenger intercom on or off. Press and hold ICOM to access Voice Activated Switch (VOX) settings (page 1.40).

PASSENGER CB CONTROLS

1. PTT (Push to Talk): Press and hold PTT button to transmit.
2. Rear Volume: Press $(+)$ or (-) to adjust the rear headset volume.

AUDIO SYSTEM POWER

The ignition key must be in the PARK or ON position to use the audio system.

With the key in the PARK or ON position and audio system OFF, the screen will display "VICTORY".
VICTORY
NOTE: To prevent battery drain, do not leave the key in the PARK or ON position for long periods.

Press the VOL (+) button to turn the audio system on.

The screen will display the active entertainment source.

1. Current audio source:

- (U.S.) FM / AM / WX / iPod - AUX / XM
- (Euro) FM / MW / LW / iPod - AUX

2. Station preset number ($\mathrm{P} 1-\mathrm{P} 15$).
3. CB radio active and active channel (if equipped).
4. Intercom system active (if equipped).
5. Stereo indicator.

NOTE: The audio system will always display the last active source when turned on.

AUDIO VOLUME CONTROL

The driver can adjust volume for the speakers and turn the speakers on and off.

Press and release VOL (+) or VOL (-) to raise or lower volume.

WX (Weather) source active:

U.S. models only

NAV MP3 source active:

AUDIO SOURCE SELECTION

Press and release the MODE button until the desired source is active.

U.S. I European models
iPod source active:

U.S. I European models (skipped if not equipped)

AUX source active:
FM source active:

FM	97.1	ST

U.S. / European models

AM source active:

AM	1130

U.S. models only

$$
\begin{array}{|l|l|}
\hline \text { AUX } & \text { AUX } \\
\hline
\end{array}
$$

U.S. / European models

XM Radio source active:

U.S. / European models (skipped if not equipped)

AUDIO SOURCE SELECTION (Cont.)

MW (Medium Wave) source:
P1
531^{*}
European models only

LW (Long Wave) source:

European models only

AUDIO TUNING

Use the tuner on the left control to select radio stations.
Press and release TUNE (+) or TUNE (-) to locate stations in single-step increments.

Press and hold TUNE (+) or TUNE (-) to SEEK for stations.

MEMORY PRESETS

The audio system features 15 user-defined presets for storing favorite stations.

To set a preset, press and release the MODE button until the desired source is active (FM, AM, WX, XM, MW, LW).

Use TUNE or seek to locate a radio station.
Press and hold the PRE button.

Use TUNE (+) and TUNE (-) to cycle to an available preset location. The preset location displays on the screen.

When the desired location is displayed, press and hold the PRE button to store the selected radio station. If the desired preset location already contains a stored radio station, it will be overwritten by the new selection.

Wait 5 seconds or push VOL (+) or VOL (-) to exit.
To listen to a preset location, press and release the PRE button until the desired location displays.

AUDIO MODE MENUS

Entering Mode Menus

Press and hold the MODE button until the system enters the audio system mode menus. Then press and release the MODE button until the desired mode menu displays.

Exiting Mode Menus

Exit the screen and return to the default display in one of two ways.

1. Wait 5 seconds. The system will automatically exit.
2. Press VOL $(+)$ or VOL $(-)$ (the volume will also change).

BASS SETTING MODE

Press TUNE (+) or TUNE (-) to adjust. (See page 1.33 to enter and exit mode menus).

TREBLE SETTING MODE

Press TUNE (+) or TUNE (-) to adjust. (See page 1.33 to enter and exit mode menus).

FADER SETTING MODE

Press TUNE (+) or TUNE (-) to adjust.
(See page 1.33 to enter and exit mode menus).

EXTERNAL SPEAKERS MODE

Press TUNE (+) or TUNE (-) to adjust.
(See page 1.33 to enter and exit mode menus)

AUDIO MODE MENUS (Cont.)

AUTOMATIC VOLUME CONTROL (AVC) MODE

When set, this feature will lower or raise the speaker / headset volume automatically, based on vehicle speed.

Press TUNE (+) or TUNE (-) to adjust.
(See page 1.33 to enter and exit mode menus).

- AVC Off $=$ No AVC. Volume will not adjust
- AVC Low = Least aggressive AVC setting.
- AVC Medium = Moderate AVC setting.
- AVC High = Most aggressive AVC setting.

+	
TUNE	AUTO VOL CONTROL
-	OFF

+	AUTO VOL CONTROL
TUNE	LOW

+	AUTO VOL CONTROL MEDE -

+	AUTO VOL CONTROL
TUNE	HIGH

CB HEADSET VOLUME CONTROLS MODE (If Equipped)

The headsets have 3 separate volume settings: Intercom (ICOM) volume, CB receive volume, and entertainment (ENT) volume. Always position headsets with the speakers directly over your ears to ensure the best sound quality and volume.

NOTE: The driver can turn off the external speakers and listen to audio only through the headsets (See External Speakers page 1.33).

Item	Can Be Adjusted / Driver Controls	Passenger Controls
ENT Volume	Whilc listening to ENT / Press VOL ((+) or VOL (-) on the left control.	Press (+) or $(-)$ on the headset control cord.
ICOM Volume	When VOX is in use/Press VOL (+) or VO $(-)$ on the left control.	
CB Receive Volume	When receiving a CB transmission / Press VOL (+) or VOL (() on the left control.	

CB HEADSET ENT MODE (If Equipped)

(See page 1.33 to enter and exit mode menus).
Press the hand control TUNE (+) or (-) button to set the CB Headset ENT settings.

OFF: Only communications are audible in the headsets. Riders can listen to navigation commands and entertainment with the external speakers while reserving the headset for communication.

MIX: The audio source volume drops lower than the ICOM volume whenever the voice operated switch (VOX) is opened. The audio source volume gradually returns to its original level after the VOX is closed.

MUTE = The audio source volume is muted when the VOX is opened. The audio source volume gradually returns to its original level once the VOX is closed.

AUDIO MODE MENUS (Cont.)

DRIVER ICOM VOLUME MODE

(See page 1.33 to enter and exit mode menus).
Press TUNE (+) or TUNE (-) to adjust.

DRIVER CB VOLUME MODE

Press TUNE (+) or TUNE (-) to adjust.

CB LO/DX MODE

Press TUNE (+) or TUNE (-) to change settings. See page 1.39 for more detailed CB / ICOM information.

RADIO DATA SYSTEM (RDS) MODE

(See page 1.33 to enter and exit mode menus).
Press TUNE (+) or TUNE (-) to turn RDS on, full, or off. When ON, the screen will display the 8 character station identification in the upper left of the display. When turned to FULL, the screen will display the 8 character station identification in the upper left of the display plus the extended station information such as artist and song title in the center of the display (if available in the radio signal you are receiving).

+	RDS
TUNE	ON

TUNE	RDS
-	FULL

TUNE	RDS
-	OFF

AUX MODE

(See page 1.33 to enter and exit mode menus).
Press TUNE (+) or TUNE (-) to choose AUX (for iPod or any other MP3 player) or NAV MP3 for navigation unit MP3 player use.
NOTE: NAV MP3 mode will override any device connected with an input cable. If using NAV MP3 mode, always pause the Garmin unit before changing sources. Otherwise, music from the NAV unit will interrupt the new source, interpreting it as navigation commands, not music.

+ TUNE	AUX MODE AUX
TUNE $_{+}^{+}$	AUXMODE NAV MP3

AUDIO MODE MENUS (Cont.)

XM DISPLAY MODE*

(See page 1.33 to enter and exit mode menus).
Press TUNE (+) or TUNE (-) to set the screen to display channel name or category when the XM radio is active.

*This menu item is skipped when XM radio is not present.

XM CATEGORY MODE*

(See page 1.33 to enter and exit mode menus).
Press TUNE (+) or TUNE (-) to set the music selection category when tuning XM.

These categories are downloaded from XM whenever the XM antenna is receiving a signal and may change from time to time.

TUNE	XM CATEGORY All Channels
TUNE	XM CATEGORY MorMusic
TUNE	XM CATEGORY Traffic

NOTE: Selecting a category will then limit the channels available to those within that category until ALL CHANNELS or another category is selected.
*This menu item is skipped when XM radio is not present.

NOAA WEATHER BAND (WX)

Weather band channels are broadcast by the National Oceanic and Atmospheric Administration (NOAA). NOAA operates more than 940 transmitters covering the United States, Puerto Rico, the U.S. Virgin Islands, U.S. Pacific Territories, and adjacent coastal waterways.

Typically, only one weather band channel will be available for a given location. When traveling, if a channel becomes unavailable, search for another active channel.

Press and release the MODE button until WX is the active source.

When the WX source is selected, a total of 7 weather band channels are available.

Press TUNE (+) or TUNE (-) to access a channel.

WX Channels

WX CH.	Freq.
1	162.400
2	162.425
3	162.450
4	162.475
5	162.500
6	162.525
7	162.550

CB RADIO / ICOM SYSTEM

INTRODUCTION - CB RADIO FCC RULES

In the U.S.A., refer to the Federal Communications Commission (FCC) Plain Rules pamphlet accompanying the CB/ICOM kit for a comprehensive guide of citizens band ($C B$) radio rules and regulations.

HEADSET USE

The use of helmet-mounted headsets may be restricted or prohibited in some areas. Always obey all applicable regulations and laws.

The headsets have three separate volume settings: Intercom (ICOM) volume, CB receive volume and entertainment (ENT) volume. See page 1.34 for more information.

GETTING STARTED - CB / ICOM

NOTE: To minimize distractions while riding, always make adjustments to the CB/ICOM system prior to operating the motorcycle.

NOTE: To prevent battery drain, do not leave the key in the PARK or ON position for long periods.

The ignition key must be in the PARK or ON position to use the audio system.

Press the VOL (+) button to turn the audio system on.

Press COM on the upper left handlebar control to activate the CB-COM system.

CB CHANNELS

When the CB radio system is active, "CB" and the active channel will display.

Press and hold COM on the upper LH control to access the CHANNEL ADJUST screen.

Push COM or ICOM on the left control to change channels.

| COM |
| :---: | :---: |
| $+\%$ |
| ICOM |\quad CHANNEL ADJUST

NOTE: Changing to a new channel may require changing the squelch setting.

Wait 5 seconds or push VOL (+) or VOL (-) to exit the CHANNEL ADJUST screen and return to the main display.

CB / ICOM SYSTEM (Cont.)

PUSH-TO-TALK (PTT)

Driver - Press and hold the top or bottom of the PTT button on the upper LH control to transmit over CB radio.

Passenger - The passenger must push and hold the PTT button on the headset controls.

NOTE: PTT will activate the intercom when the intercom is turned on and the CB is turned off.
"TX" will display on the screen when one of the PTT buttons is pressed.
" $R X$ " will display when the $C B$ is receiving a transmission.

SQUELCH

Squelch blocks undesired signals and noise by allowing the reception of signals only over a specified level.

Press and release the SQ (+) or SQ (-) buttons to adjust the squelch level to any level between OPEN and CLOSED.

When squelch is set to OPEN, no filtering occurs. Setting squelch to CLOSE blocks all signals, including strong signals.

To set the squelch level, first lower the squelch level until noise or static is audible.

Gradually increase the squelch level until the noise or static is gone.

CB / ICOM SYSTEM (Cont.)

CB RADIO VOLUME SETTING (Driver)

To change settings, enter the mode menu and toggle to the CB VOL display.

Press TUNE (+) or TUNE (-) to adjust settings.
NOTE: The CB volume can also be set using the hand control ($\mathrm{VOL}+/-$) when the CB is receiving.

CB RADIO VOLUME SETTING (Passenger)

The passenger can control rear headset volume when the Entertainment, CB radio or ICOM is active.

Press (+) or (-) on the headset control to raise or lower volume.

CB LOIDX

To change settings, enter the mode menu and toggle to the CB LO/DX mode display.

Press TUNE (+) or TUNE (-) to set the CB to LOCAL (LO) or DISTANT (DX) mode.

+	CB LO/DXMODE
TUNE	DISTANT
-	

Distant: Use this setting for weaker signals. Receiver sensitivity will be increased. Static and noise levels are increased.

Local: Use this setting for stronger signals or in high density areas. Receiver sensitivity will be decreased. Static and noise levels are decreased.

CB / ICOM SYSTEM (Cont.)

CB FREQUENCIES

The FCC has designated 40 citizen band (CB) channels for consumer use.

NOTE: Channel 9 is designated as an EMERGENCY channel for emergency use only.

CB Channels / Frequencies

CH.	FREQ.	CH.	FREQ.	CH.	FREQ.
1	26.965	8	27.055	15	27.135
2	26.975	9	27.065	16	27.155
3	26.985	10	27.075	17	27.165
4	27.005	11	27.085	18	27.175
5	27.015	12	27.105	19	27.185
6	27.025	13	27.115	20	27.205
7	27.035	14	27.125	21	27.125

22	27.225	31	27.315	40	27.405
23	27.255	32	27.325		
24	27.235	33	27.335		
25	27.245	34	27.345		
26	27.265	35	27.355		
27	27.275	36	27.365		
28	27.285	37	27.375		
29	27.295	38	27.385		
30	27.305	39	27.395		

ICOM SYSTEM

Press and release ICOM on the upper LH control to activate the intercom system.

When the intercom system is active, ICOM will be displayed on the screen.
$\left.\begin{array}{|c|ll|}\hline F M \\ \text { ICOM } \\ \text { CB19 }\end{array}\right) \quad 92.5$

VOX BREAK SETTING

The intercom is opened and closed using a voice operated switch (VOX). The volume sensitivity level required to open the intercom can be adjusted using the VOX sensitivity setting.

Press and hold ICOM on the upper LH control to access the VOX sensitivity set screen.

Push COM or ICOM to adjust the sensitivity setting.
Lower settings require less volume to open the intercom.
If wind or ambient vehicle noise trigger the VOX to open, set the VOX sensitivity to a higher level.

VOX" will be display on the screen whenever the driver or passenger are communicating over the intercom system.

CB / ICOM SYSTEM (Cont.)

ICOM VOLUME SETTING (Driver)

To change settings, enter the mode menu and toggle to the ICOM VOL mode display.

Press TUNE (+) or TUNE (-) to adjust settings.
Intercom volume can be adjusted with the hand control when the VOX circuit is open.

ICOM VOLUME SETTING (Passenger)

Press (+) or (-) on the headset control to raise or lower volume.

HEADSET RECEPTACLES

The driver headset receptacle (if equipped) is located on the left side of the motorcycle below the fuel tank.

The passenger headset receptacle (if equipped) is located on the left side of the motorcycle near the front of the saddlebag.

GETTING STARTED - AUX / iPod

AUX I iPod Input Cable

\square

Input Cable Setup

The AUX and iPod input cables are connected to the audio system via an (accessory) extension cable leading from the fairing area to the right saddlebag. An accessory iPod pouch may also be installed in the saddlebag to hold the iPod unit.

Only one input cable (either AUX or iPod) can be connected at any given time.

The AUX harness uses one of the two connectors on the input cable; an iPod uses both of the connectors.

To connect a device:

1. Locate the input cable in the right saddlebag.
2. Remove the protective cap and connect either the AUX lead or the iPod leads. Be sure the connector snaps together securely.
3. If using the AUX connector, be sure to install the protective cap on the unused connector.
4. Set the active source to AUX or iPod as described on page 1.31 .

To change or disconnect an input cable:

1. Disconnect the cable from the device by carefully pushing down on the locking tab and pulling gently to separate the connector.
2. Install the protective cap(s).

AUX / iPod (Cont.)

iPod Use

The ignition key must be in the PARK or ON position to use the AUX / iPod function.
NOTE: To prevent battery drain, do not leave the key in the PARK or ON position for long periods.

Press the VOL (+) button to turn the audio system on.

Press and hold MODE to enter the settings menu.

Use the TUNE + / - button to change the mode to AUX (for iPod or any other MP3 player use) or to NAV MP3 to use the MP3 player feature of the navigation unit.
NOTE: NAV MP3 mode will override any device connected with an input cable in the right saddlebag.

To use the MP3 function of the NAV unit (if equipped).

When AUX is active, the screen will display "AUX" as the active source.

When iPod is active, the screen will display the iPod as the active source and iPod information in the display screen.

iPod	Artist
ICOM	Song Title
CB19	Playlist

iPod PLAY LISTS

NOTE: Generic MP3 players can play music, but cannot be controlled though the audio system (for example, selecting tracks or playlists).

To browse tracks by artist, playlist or album, press and hold the PRE button to bring up the selection screen.

Press TUNE (+) or TUNE (-) to highlight the desired category.

Press and release the PRE button to bring up the items in the selected category. When a category is selected, a list of items in that category are displayed with the active track highlighted.

AUX / iPod (Cont.)

iPod SONG CONTROL

Press and release TUNE (+) or TUNE (-) to change tracks in the currently selected playlist.

Press and hold TUNE (+) or TUNE (-) to fast-forward or fast-reverse in the currently playing song.
NOTE: Generic MP3 players can play music, but cannot be controlled though the audio system (for example, selecting tracks or playlists).

A quick double-press and release (double click) of the TUNE (+) or TUNE (-) button will bring up a list of songs in the currently selected playlist.

+	Brown Sugar
TUNE	Gimme Shelter 2 Honky Tonk Woman

Use TUNE (+) or TUNE (-) to scroll through this song list. The selected song will be highlighted on the center line of the display. Press and release the PRE button to select and play the highlighted song, or press and release the MODE button to exit without selecting a new song.

XM RADIO

About XM Radio

XM is North America's number one satellite radio company, offering an extraordinary variety of commercialfree music, plus the best in premier sports, news, talk radio, comedy, children's and entertainment programming, broadcast in superior digital audio quality coast to coast.

For more information, or to subscribe, U.S. customers visit xmradio.com or call XM Listener Care at 1-800-XMRADIO (1-800-967-2346); Canadian customers visit xmradio.ca or call XM Listener Care at 1-877-GETXMSR (1-877-4389677).

XM Ready ${ }^{\text {® }}$ Legal

XM monthly service subscription sold separately. XM MiniTuner and Home Dock required (each sold separately) to receive XM service. It is prohibited to copy, decompile, disassemble, reverse engineer, hack, manipulate or otherwise make available any technology or software incorporated in receivers compatible with the XM satellite Radio System. Installation costs and other fees and taxes, including a one-time activation fee may apply. All fees and programming subject to change. Channels with frequent explicit language are indicated with an XL . Channel blocking is available for XM radio receivers by calling 1 -800-XMRADIO (U.S.residents) and 1-877-GETXMSR (Canadian residents). Only available in the 48 contiguous United States and Canada. ©2007 XM Satellite Radio Inc. All rights reserved.

XM Ready ${ }^{\text {© }}$ Subscription

Once you have installed the XM Mini-Tuner Home Dock, inserted the XM Mini-Tuner, connected the XM Mini-Tuner Home Dock to your XM Ready audio system, and installed the antenna, you are ready to subscribe and begin receiving XM programming. There are three places to find your eight character XM Radio ID: On the XM Mini-Tuner, on the XM Mini-Tuner package, and on XM Channel 0 . Record the Radio ID below for reference.

Record the Radio ID below for reference:

NOTE: The XM Radio ID does not use the letters "I", "O", "S" or "F".

Activate your XM Satellite Radio service in the U.S. online at http://activate.xmradio.com or call 1-800-XMRADIO (1-800-967-2346). Activate your XM Satellite Radio service in Canada online at https://activate.xmradio.ca or call 1-877-GET-XMSR (1-877-438-9677). You will need a major credit card. XM will send a signal from the satellites to activate the full channel lineup. Activation normally takes 10-15 minutes, but during peak busy periods you may need to keep your XM Ready audio system on for up to an hour. When you can access the full lineup on your XM Ready audio system you are done.

GETTING STARTED - XM Radio

The ignition key must be in the PARK or ON position to use the XM radio.

NOTE: To prevent battery drain, do not leave the key in the PARK or ON position for long periods.

Press VOL (+) to turn the audio system on.
Press and release the MODE button until the XM radio is the active source.

When the XM Radio is active, the screen will display radio channel number, preset number (if applicable), the channel name or category, the artist, and song title.

XM RADIO (Cont.)

XM RADIO RECEPTION

If XM radio is not receiving a signal due to being indoors (or any overhead obstruction) "No Sgnl" appears in the display.
$\mathrm{XM} \mid \mathrm{CH} 55 \quad \longrightarrow$ No Signl

If the XM antenna becomes disconnected, "Antenna" appears in the display.

XM RADIO MENU OPTIONS

The XM radio system has unique menus that apply only to this system when $X M$ radio is the active source.

Some Audio System settings such as BASS, TREBLE, FADER, etc., apply to both the audio system and the XM radio system.

Menus specific to the XM radio system are:
XM Display (You can select CATEGORY or CHANNEL NAME to be displayed)

XM Category (Rock, Country, Traffic, Sports, Talk News, All Channels, etc.)

XM RADIO SETTINGS

To access XM specific menus, turn the audio system power ON (using VOL (+) button) and change the active source to XM (press and release the MODE button until $X M$ is active).

Press and hold the MODE button until the system enters the audio system mode menus. Then press and release the MODE button repeatedly to toggle to the XM DISPLAY menu.

Press TUNE (+) or TUNE (-) to select CATEGORY or CHANNEL NAME.

+	XM DISPLAY
TUNE	CHANNEL NAME
-	

+	XM DISPLAY
TUNE	CATEGORY
-	

In the CATEGORY mode, the category of a selected station will display in the upper right corner of the screen.

In CHANNEL NAME mode, the name of the selected channel will display.

XM CATEGORY SELECTION

With XM as the active source, use the MODE button to scroll to the XM Category menu.

Press TUNE (+) or TUNE (-) button on the left control to change the category.

+	XM CATEGORY
TUNE	ALL CHANNELS

XM RADIO (Cont.)

XM CHANNEL SELECTION

Press TUNE (+) or TUNE (-) button on the left control to change the channel.

The ALL CHANNELS category must be selected to scroll through every available channel in numerical order.

If a specific category (other than ALL CHANNELS) is selected, only channels within that category will be selected with the TUNE button.

NOTE: If a Preset button is used to select a channel that is not within the currently selected category and the TUNE $+/$-button is used to change the channel, it will tune stations within the previously selected category, not within the category of the Preset station.

EXAMPLE:
Country is the selected category.
Preset 6 is used to switch to a channel within the Rock category.

Pressing TUNE + / - on the lower left control will continue to only select stations available in the Country category.

NAV MP3

BEFORE YOU BEGIN - NAV MP3

Here are a few helpful tips for motorcycles equipped with the Garmin ${ }^{*}$ zumo 660 NAV MP3 player and the Audio Integration Kit.

- Be sure to read the Owner's Manual and all information included with your Garmin${ }^{*}$ zumo ${ }^{*} 660$ to become familiar with the operation of and access to all available features.
- The Audio Integration kit must be installed to enable outputs from the NAV MP3 (such as navigation instructions or user-loaded MP3 media files) to play through the headsets or the speakers.
- The NAV MP3 unit is fully functional without the Audio Integration kit installed, but there will be no interface with the audio system on the motorcycle.
- Review general Audio system operation information beginning on page 1.28.

XM RADIO (Cont.)

TIPS FOR NAV MP3 OPERATION

Signal Priority

- Signals coming from the NAV MP3 unit will override any source of the motorcycle's audio system to ensure navigation instructions are communicated when needed. Navigational instructions will also override the MP3 player.

Volume Settings - IMPORTANT!

- You must set volume levels within the NAV MP3 unit. Volume settings in the motorcycle's audio system control NAV MP3 volume, but navigation instructions may be difficult to hear if volume levels in the unit are set too low. See the GARMIN information for setting procedures.

Recommended initial setting are 100/80/80:
MASTER - 100\%
NAVIGATION - 80\%
MEDIA - 80\%

To switch to the radio when the MP3 player is in use:

- Pause or stop the MP3 player to switch to radio.

To switch from radio to the MP3 player:

- Change the active source to $A \cup X$
- For best sound quality, change the AUX MODE setting on the radio to NAV MP3 when listening to the MP3 player in the NAV unit. Audio works in the $A \cup X$ setting, but the levels are not optimized.
- Refer to Getting Started (below) for instructions on how to change the active source to $A U X$ and the AUX Mode to NAV MP3.
- If playing MP3 files from the Garmin ${ }^{*}$ zumo ${ }^{*} 660$ unit, you may need to turn down the "MEDIA VOLUME" on the Garmin unit to avoid distortion.

GETTING STARTED - NAV MP3

The ignition key must be in the PARK or ON position to use the NAV MP3 player.
NOTE: To prevent battery drain, do not leave the key in the PARK or ON position for long periods.

Press the VOL (+) button to turn the audio system on.

Press and release the MODE button until AUX is the active source.

There are two AUX Modes available:

AUX (iPod) and NAV MP3

Press and hold the MODE button until the system enters the audio system mode menus. Then press and release the MODE button repeatedly to toggle to the AUX mode menu.

Press TUNE (+) or TUNE (-) to set the mode to AUX (for iPod or any other MP3 player use) or to NAV MP3 to use the MP3 player in the NAV unit.

To use the MP3 function of the NAV unit (if equipped).

REFERENCE

SAE TAP DRILL SIZES

Thread Size/	Drill Size	Thread Size $/$ Drill Size	
$\# 0-80$	$3 / 64$	$1 / 2-13$	$27 / 64$
$\# 1-64$	53	$1 / 2-20$	$29 / 64$
$\# 1-72$	53	$9 / 16-12$	$31 / 64$
$\# 2-56$	51	$9 / 16-18$	$33 / 64$
$\# 2-64$	50	$5 / 8-11$	$17 / 32$
$\# 3-48$	$5 / 64$	$5 / 8-18$	$37 / 64$
$\# 3-56$	45	$3 / 4-10$	$21 / 32$
$\# 4-40$	43	$3 / 4-16$	$11 / 16$
$\# 4-48$	42	$7 / 8-9$	$49 / 64$
$\# 5-40$	38	$7 / 8-14$	$13 / 16$
$\# 5-44$	37	$1-8$	$7 / 8$
$\# 6-32$	36	$1-12$	$59 / 64$
$\# 6-40$	33	$11 / 8-7$	$63 / 64$
$\# 8-32$	29	$11 / 8-12$	$13 / 64$
$\# 8-36$	29	$11 / 4-7$	$17 / 64$
$\# 10-24$	24	$11 / 4-12$	$111 / 64$
$\# 10-32$	21	$11 / 2-6$	$111 / 32$
$\# 12-24$	17	$11 / 2-12$	$127 / 64$
$\# 12-28$	$4.6 m m$	$13 / 4-5$	$19 / 16$
$1 / 4-20$	7	$13 / 4-12$	$143 / 64$
$1 / 4-28$	3	$2-41 / 2$	$125 / 32$
$5 / 16-18$	F	$2-12$	$159 / 64$
$5 / 16-24$	1	$21 / 4-41 / 2$	$21 / 32$
$3 / 8-16$	0	$21 / 2-4$	$21 / 4$
$3 / 8-24$	Q	$23 / 4-4$	$21 / 2$
$7 / 16-14$	U	$3-4$	$23 / 4$
$7 / 16-20$	$25 / 64$		

METRIC TAP DRILL SIZES

Tap Size	Drill Size	Decimal Equivalent	Nearest Fraction
$3 \times .50$	$\# 39$	0.0995	$3 / 32$
$3 \times .60$	$3 / 32$	0.0937	$3 / 32$
$4 \times .70$	$\# 30$	0.1285	$1 / 8$
$4 \times .75$	$1 / 8$	0.125	$1 / 8$
5×80	$\# 19$	0.166	$11 / 64$
$5 \times .90$	$\# 20$	0.161	$5 / 32$
6×1.00	$\# 9$	0.196	$13 / 64$
7×1.00	$16 / 64$	0.234	$15 / 64$
8×1.00	J	0.277	$9 / 32$
8×1.25	$17 / 64$	0.265	$17 / 64$
9×1.00	$5 / 16$	0.3125	$5 / 16$
9×1.25	$5 / 16$	0.3125	$5 / 16$
10×1.25	$11 / 32$	0.3437	$11 / 32$
10×1.50	R	0.339	$11 / 32$
11×1.50	$3 / 8$	0.375	$3 / 8$
12×1.50	$13 / 32$	0.406	$13 / 32$
12×1.75	$13 / 32$	0.406	$13 / 32$

DECIMAL EQUIVALENTS

FAHRENHEIT TO CELSIUS

${ }^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}: 9\left({ }^{\circ} \mathrm{C}+40\right) \div 5-40={ }^{\circ} \mathrm{F}$
${ }^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}: 5\left({ }^{\circ} \mathrm{F}+40\right) \div 9-40={ }^{\circ} \mathrm{C}$

MEASUREMENT CONVERSION CHART

Unit of Measure	Multiplied by	CONVERTS TO
$\mathrm{ft}-\mathrm{lb}$	$\times 12$	$=$ in-lb
$\mathrm{in}-\mathrm{lb}$	x. 0833	$=\mathrm{ft}-\mathrm{lb}$
$\mathrm{ft}-\mathrm{lb}$	$\times 1.356$	$=\mathrm{Nm}$
in-lb	x. 0115	$=\mathrm{kg}-\mathrm{m}$
Nm	x .7376	$=\mathrm{ft}-\mathrm{lb}$
$\mathrm{kg}-\mathrm{m}$	$\times 7.233$	$=\mathrm{ff}-\mathrm{lb}$
$\mathrm{kg}-\mathrm{m}$	$\times 86.796$	$=\mathrm{in}-\mathrm{lb}$
kg-m	$\times 9.81$	$=\mathrm{Nm}$
in	x 25.4	$=\mathrm{mm}$
mm	x. 03937	$=$ in
in	$\times 2.54$	$=\mathrm{cm}$
mile	$\times 1.6$	$=\mathrm{km}$
km	x. 6214	$=$ mile
Ounces (oz)	$\times 28.35$	$=$ grams (g)
grams (g)	x. 035	$=$ Ounces (oz)
cc's	x. 03381	$=$ Fluid Ounces (oz)
Ibs	x. 454	$=\mathrm{kg}$
kg	$\times 2.2046$	$=\mathrm{lbs}$
Cubic Inches	$\times 16.387$	= Cubic Centimeters
Cubic Centimeters	x. 061	$=$ Cubic Inches
Imperial pints	$\times .568$	$=\operatorname{liters}$ (I)
liters (1)	$\times 1.76$	= Imperial pints
Imperial quarts	x 1.137	$=$ liters (1)
liters (1)	x. 88	= Imperial quarts
Imperial quarts	$\times 1.201$	= US quarts
US quarts	$\times .833$	= Imperial quarts
US quarts	x. 946	= liters
liters	$\times 1.057$	= US quarts
US gallon	$\times 3.785$	= liter
liter	x. 264	= US gallon
Pounds force per square inch (psi)	$\times 6.895$	$=$ Kilo pascals (kPa)
Kilo pascals (kPa)	x. 145	= Pounds force per square inch (psi)

SPECIFICATIONS / GAUGE / AUDIO

NOTES

CHAPTER 2 MAINTENANCE

SERVICE SPECIFICATIONS 2.2
TUNE UP 22
OIL CHANGE 2.2
SPECIAL TOOLS 2.3
MAINTENANCE PRODUCTS 2.3
PERIODIC MAINTENANCE 2.4
PERIODIC MAINTENANCE INTERVAL TABLE 2.4
AIR FILTER 2.5
ENGINE OIL LEVEL / ENGINE OIL AND FILTER CHANGE 2.7
REVERSE IDLER SHAFT LUBRICATION 2.8
IDLE SPEED / FAST IDLE SPEED 2.9
TIRE PRESSURE / TIRE INSPECTION 2.9
THROTTLE CABLE INSPECTION / LUBRICATION 2.10
THROTTLE CABLE FREE PLAY 2.10
CRUISE CONTROL CABLE 2.11
FRONT BRAKE LEVER INSPECTION / LUBRICATION 2.11
FRONT BRAKE LEVER REACH ADJUSTMENT 2.12
CLUTCH LEVER LUBRICATION 2.12
CLUTCH LEVER FREE PLAY (CABLE) 2.13
BRAKE FLUID LEVEL 214
BRAKE PAD INSPECTION 2.15
SHIFT PEDAL / BRAKE PEDAL / FOOT CONTROL ADJUSTMENT 2.16
EVAPORATIVE EMISSION CONTROL SYSTEM (CALIFORNIA MODELS) 2.17
FUEL FILTER / FUEL SYSTEM INSPECTION 2.17
SPARK PLUG REMOVAL / INSPECTION / INSTALLATION 2.18
BATTERY INSPECTION 2.19
BATTERY REMOVAL / INSTALLATION 2.20
ENGINE COMPRESSION TEST / CYLINDER LEAKAGE TEST 221
DRIVE BELT WEAR ANALYSIS 2.22
DRIVE BELT INSPECTION 2.22
DRIVE BELT TENSION 2.23
DRIVE BELT CLEANING 2.24
DRIVE BELT ADJUSTMENT / ALIGNMENT 2.25
HEADLAMP AIM INSPECTION / HEADLAMP AIM ADJUSTMENT 2.27
SIDESTAND / SIDESTAND PAD INSPECTION 2.28
SIDESTAND \& SPRING REMOVAL 2.28
SIDESTAND PAD REPLACEMENT (TYPICAL) 2.29
REAR SUSPENSION / SWINGARM INSPECTION 2.30
REAR SUSPENSION AIR PRESSURE ADJUSTMENT 2.31
FRONT FORK / SUSPENSION INSPECTION 2.32
FUSE REPLACEMENT 2.33 2.33
FASTENERS
FASTENERS
LOCK AND IGNITION SWITCH LUBRICATION 2.33
CLEANING 2.34 2.34
WASHING, WAXING, POLISHING, APPLYING PROTECTANTS
WASHING, WAXING, POLISHING, APPLYING PROTECTANTS
WINDSHIELD CARE 2.35
2.35
STORAGE
SUEDE FINISH CARE 2.35

MAINTENANCE

SERVICE SPECIFICATIONS

TUNE UP

ITEM	SPECIFICATION (2008-2010)
Brake Pedal Freeplay (Rear)	1-2mm (.031") Gap At Pedal Stop
Brake Pad Friction Material Thickness (All)	1.0 mm (.039 inch) Minimum
Clutch Lever Freeplay (Cable)	. 5 - 1.5 mm (.020-.060")
Compression Pressure (Cylinder)	210-225 (1448-1551 kPa) (page 2.21)
Drive Belt Deflection (Seepage 2.23)	$32 \mathrm{~mm}+/-.5 \mathrm{~mm}\left(11 / 4^{\prime \prime}+/-1 / 64\right)$ with 10 lb force
Drive Belt Frequency Using Sonic Tension Meter (Seepage 2.23)	Frequency: $20 \mathrm{~Hz}+/-1 \mathrm{~Hz}$ Belt Mass Constant: 8.4 Span: 708.65 mm
DriveBeltWidth/Teeth/Pitch	$28 \mathrm{~mm} / 154 \mathrm{~T} / 14 \mathrm{~mm}$
Idle Speed / Fast Idle Speed	NOT ADJUSTABLE (ECM / IAC valve controlled) (See page 2.9)
Oil Pressure, Lubrication @ 3000 rpm	552 kPa (80 psi) (Minimum 40 psi$)$
Oil Pressure, Cooling @ 3000 rpm	(See special notes Chapter 4)
Rear Shock Air Pressure	See page 2.31 or decal on right saddlebag lid
Spark Plug Type / Gap	NGK DCPR6E / 8 mm (.032')
Throttle Cable Freeplay	2 - 4 mm (5/64-5/32") (page 2.10)
Tire Pressure	Refer to page 2.9 or Manufacturing Decal on steering head

OIL CHANGE

Start the engine and warm it up for several minutes. While warming up, check for oil leaks. If any leaks are found, stop the engine immediately and determine the source of the problem before starting the engine again.

TIGHTENING TORQUE	
Drain Plug (new sealing washer)	$20 \mathrm{Nm}(15 \mathrm{ft}$ Ibs.)
Oil Filter	$3 / 4$ full turn after contacting seal surface

OIL TYPE / QUANTITY	
Oil Type	Victory Semi-Synthetic 20W40 Engine Oil
Oil Capacity (Oil \& Filter Change)	Approximately 4.25 liters (4.5 quarts)
Oil Capacity (Dry)	Approximately 4.75 liters (5.0 quarts)

Use Victory 20W40 Synthetic Blend 20W40 engine oil for all temperatures. If Victory oil is not available, use a high quality 20W40 motorcycle designed for use with wet clutches (such as those with a JASO MA rating).

NOTICE

Do not put chemical additives in the oil. Victory motorcycle oil has been specially designed for this application. Additional additives are not necessary and have not been approved by Victory Engineering.

2.2

SPECIAL TOOLS

MAINTENANCE TOOLS

- Belt Tension Gauge PV-43532 (Sonic Tension Meter is optional and commercially available)
- Compression Gauge Set PV-33223
- Victory Air Pump \& Gauge 2876654 or PV-48909

MAINTENANCE PRODUCTS

LUBRICANTS / CHEMICALS

Visit www.purevictorypolishes.com for a complete list of available cleaning products. See page 2.34 for cleaning guidelines.

MAINTENANCE PRODUCT PART NUMBERS

Product	Part Number
All Purpose Grease	2872187
Brake Cleaner	2872191
Brake Fluid, DOT 4	2872189
Carb and Throttle Body Cleaner, 13 oz . Aerosol	2872890
Dielectric Grease (Nyogel $^{\text {TM }}$)	2871329
Electrical Contact Cleaner	2872864
Fork Oil - Cartridge Forks (KYB)	2874568
Fuel Additive, Carbon Clean	2872190
Fuel Stabilizer	2872280
Hand Grip Adhesive (Three Bond 1501) (10ml tube)	2872575
Loctite $262{ }^{\text {TM }}$ (50cc Tube)	2871951
Moly Assembly Paste	2871460
Multi-Purpose Lubricant	2872863
Oil Change Kit	2873551
Paint Detail Kit - Polish, Wax, and Dressing (also see www.purevictorypolishes.com)	2872195
Paint Restore Polish, 12 oz . Aerosol	2872192
Paint Wax and Final Finish	2872193
Primer $\mathrm{N}^{\text {TM }}$ (25 g Aerosol)	2870585
Semi-Synthetic 20W/40 Engine Lubricant	2872175 (Quart) 2872176 (Gallon)
Vinyl and Rubber Dressing	2872194

PERIODIC MAINTENANCE

Periodic Maintenance Interval Table

ENGINE	ODOMETER READING in MILES (KILOMETERS)																					
Component (see operation codes below)	$\begin{aligned} & \text { W } \\ & \text { 区 } \end{aligned}$	응	\circ 0 0 0 0 0 N	응 © © 0						$\bar{\circ}$ 0 ल m 8 8	$\bar{\circ}$ 0 0 0 0 0 N N		\circ O j B O N N		0 0 N 0 0 0 0 ö	$\bar{\circ}$ 0 N 0 0 0 0	응 0 0 0 0 0 0		$\bar{\circ}$ 0 N		\circ 8 0 0 0 0 0	
Air Filter	2.5	1	1	1	1	R	1	1	1	R	N	,	N	R	1	-	-	R	-	-	-	R
Crankcase Vent System	2.17	1		1		1		1		1		1		I		1		1		1		1
Drive Belt	2.23	1	1	I	1	1	1	1	1	1	1	1	1	R	1	1	1	1	1	I		1
Drive Belt Adjustment	2.23	P	Adjust with each tire change thereafter																			
Engine Compression	2.21	1				1				1				1				1				1
Engine Oil*	2.7	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Engine Oil Filter*	2.7	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Evaporative Emission	2.17	1		1		1		I		I		1		I		1		I		1		1
Exhaust System	Ch. 3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Fuel Filter	2.17																					R
Fuel System	2.17	1	1	I	1	1	1	I	1	1	I	1	I	I	I	I	1	1	1	1	I	1
Reverse Idler Shaft	2.8	1	L	L	L	L.	L	L	L	L	L	L	L	L	L.	L	L	L	L	L	L	L
Spark Plugs	2.18	1		1		1		1		1		1		R		1		1		1		1
Throttle / Cruise Cable End	2.10	1	1	1	1	L	1	1	1	L	1	1	1	L	1	1	1	L	1	1	1	L
CHASSIS	ODOMETER READING in MILES (KILOMETERS)																					
Battery	2.19	1		1		1		1		T		T		I		1		1		1		1
Brake Fluid**	2.14	1	1	1	1	1	1	1	1	1	1	1	1	R	1	1	1	1	1	1	1	1
Brake Pads	2.15	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Control Cable (Ends)	2.10	1		1		L		1		L		1		L		1		L		1		L
Clutch and Brake Lever	2.11	1		1		L		1		L		1		L		1		L		1		L
Fasteners	2.33	1		1		1		I		1		1		I		1		1		,		1
Front Fork Oil**	-	1		1		1		R		1		1		R		1		1		R		1
Front Forks and Front Axie	2.32	1		1		1		1		1		1		I		1		1		-		1
Gear Shift Pedal	2.16	1		I		L		1		L		1		L		1		L		¢		L
Headiamp	2.27	1				1				1				1				1				1
Ignition Switch \& Locks	2.33			L		L		L		L		L		L		L		L		L		L
Radio / Radio Software	Ch. 19	Update software annually																				
Rear Brake Pedal	2.16	1		1		L		1		L		1		L		1		L		,		L
Rear Shock Absorber	2.30	1	1	1	1	1	1	1	1	1	1	1	1	I	1	1	1	1	1	,	1	1
Rear Wheel Alignment	2.25	1		I		I		1		1		1		1		1		1		1		1
Road Test	-	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
Sidestand	2.28	1		I		L		1		L		1		L		1		L		1		L
Sidestand Pad	2.28	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Steering Head Bearings	2.32	1	1	1	1	1	1	L	1	1	1	1	1	L	1	1	1	,	1	L.	1	1
Suspension, Rear, Rocker	2.30	1		1		1		L		1		1		L		1		1		L		1
Swing Arm and Rear Axie	2.30	1		1		1		1		1		1		1		1		1		1		1
Tires / Wheels	2.9	1	1	1	1	1	1	1	1	1	,	1	1	1	1	1	1	1	1	1	1	1

Operation Codes:

I-Inspect (tighten, clean, adjust, correct or replace if necessary) R-Replace/Rebuild P-Perform L-Lubricate with proper lubricant
*Replace at specified interval or annually **Replace at specified interval or every 2 years

AIR FILTER

The air filter element is a dry, treated paper design. Do not apply air filter oil.

1. If fuel tank will be removed for other maintenance or inspection, refer to page 5.15 for removal procedure.
NOTE: The fuel line is secured to the wire harness with a tie strap. Do not attempt to remove the fuel tank with the fuel line connected to the fuel pump under the tank.

To access the air filter without removing the fuel tank, perform Steps 2-6 below. If tank was removed in Step 1, proceed to Step 7.
2. Remove side covers and seat (page 3.21).
3. Disconnect vent and water drain hoses at rear of tank.
4. Remove tank mounting bolts, flange bushings (A) and all isolators (B). Remove ground wire screw (C).

5. Place protective cloth (D) over IAC cover (RH side) and ignition switch cover (LH side).

6. Lift rear of tank until clear of mount plates. Grasp front and rear of tank and carefully slide tank rearward and off of front isolators.

NOTE: Fuel line and fuel pump wire harness can remain connected. Do not move tank rearward more than necessary to gain air filter access.
7. Loosen (3) filter retainer screws (E).
8. Loosen (2) filter mount screws (F) only until filter can be removed. Do not remove screws from filter.

9. Lift retainer up, then lift filter and slide it rearward to remove.

ENGINE OIL LEVEL

1. Warm the engine for several minutes until operating temperature is reached.
2. Stop engine and wait for 3-5 minutes.
3. Place the machine on a level area and hold it in an upright position.
4. Remove dipstick (A) and wipe it clean.

5. Screw dipstick in until seated.
6. Remove dipstick and view oil level.
7. Oil level should be between ADD and FULL lines on dipstick. If oil level is low, add Victory 20-40 SemiSynthetic engine oil to raise level to FULL mark. DO NOT overfill.

ENGINE OIL AND FILTER CHANGE

Change engine oil at intervals listed in the Periodic Maintenance Table.

1. Start and run engine until it reaches normal operating temperature. Stop engine.
2. Securely support motorcycle on sidestand.
3. Place an oil drain pan under drain plug (B) and filter (C).

4. Remove drain plug (6 mm Allen wrench) and allow oil to drain completely.
5. Remove oil filter with a $21 / 2$ inch $(63.5 \mathrm{~mm})$ filter wrench.
6. Clean drain plug sealing surface on crankcase. Replace seal washer on drain plug.
7. Install drain plug and tighten to proper torque. DO NOT overtighten.
8. Clean oil filter gasket sealing surface on crankcase.
9. Make sure new oil filter gasket is properly seated in the new oil filter, and apply a thin film of clean engine oil to the gasket. Screw new filter on until gasket contacts the filter mounting plate. Tighten filter by hand an additional $3 / 4$ turn.
(Cont.)
10. Add approximately $4 \quad 1 / 2$ quarts (4.0 liters) of oil through dipstick hole. Use only Victory brand SemiSynthetic 20W-40 Motor Oil or equivalent oil for use with wet clutches such as JASO MA rating.

NOTICE

Do not add chemical additives to the engine oil. Some automotive engine oils contain additives that could damage or reduce the service life of the wet clutch in the motorcycle.
11. Reinstall dipstick. Start and run engine until it reaches normal operating temperature.

NOTE: After an oil change, the low oil pressure indicator light could remain on longer than usual. Do not rev the engine while the light is on. If light does not go out within 5 seconds of starting the engine, stop the engine immediately and investigate.
12. Stop engine and make sure there are no leaks around the drain plug and oil filter.
13. Check oil level and adjust if needed.

NOTICE: Recycle used oil and filter in accordance with local regulations.

ENGINE OIL CAPACITY AT CHANGE (WITH FILTER)	Approx. 4.5 qt $(4.0-4.25$ liter)
ENGINE OIL CAPACITY AT	Approx. 4.0 qt
CHANGE (WITHOUT FILTER)	$(3.75-4.0$ liter)

REVERSE IDLER SHAFT LUBRICATION

On motorcycles equipped with Reverse, lubricate the reverse idler shaft at every oil change or as required for smooth reverse actuator lever movement.

1. Remove access bolt (A).
2. Spray Victory Multi-Purpose spray lubricant (2872863) into center of shaft for $2-3$ seconds while moving the Reverse actuator lever up and down through the travel range until it operates smoothly and freely.
3. Install screw and torque to $6.8 \mathrm{Nm}(60 \mathrm{lb}-\mathrm{in}$.

IDLE SPEED / FAST IDLE SPEED

NOTE: Idle speed is continuously monitored and adjusted by the ECM via the IAC valve. DO NOT tamper with or attempt to "adjust" the throttle plate flow screw (A) or plate stop screw (B)! They are factory pre-set. If idle is erratic or if idle speed is incorrect, refer to troubleshooting in this section to find the cause of the problem. Tampering with these screws will not correct an idle speed or control problem.

TIRE PRESSURE

A. WARNing

Operating the motorcycle with improper tires or with improper or uneven tire pressure could cause loss of control or accident. Always use the correct size and type of tires specified for your vehicle. Always maintain proper tire pressure as recommended in the owner's manual and on safety labels.

NOTE: Refer to the Manufacturing Information label (located on the steering head) for more information. Tire pressure should be checked when the tires are cool and on a regular basis. Tire pressure may be low despite tire appearance.

Tire $\downarrow \quad$ Load \Rightarrow	Up to 200 pounds $(91 \mathrm{~kg})$ Load	$201(91 \mathrm{kg+})$ - Max Load Capacity
FRONT:	36 psi $(248 \mathrm{kPa})$	38 psi $(262 \mathrm{kPa})$
Lunlop Elite 3 130/70R18 63H	38 psi REAR: Runlop Elite 3 180/60R16 M/C 80H	40 psi $(276 \mathrm{kPa})$

TIRE INSPECTION

1. Inspect tires for weather checking, cuts, embedded foreign objects, abnormal wear, and surface damage.
2. Inspect front and rear wheels for damage / runout. Refer to Chapters 12 and 13 for procedure.
3. Measure tread depth at center of tread (C). Measure in 3-4 places equally spaced around the tire and record the smallest measurement.

WARNING

Operating the motorcycle with worn tires could cause loss of control or accident. When a tire reaches the minimum tread depth listed below, replace the tire immediately.

MINIMUM TIRE TREAD DEPTH	
FRONT TIRE MINIMUM TREAD DEPTH	REAR TIRE MINIMUM TREAD DEPTH
$1.6 \mathrm{~mm}\left(.063^{\prime \prime}\right)$	$1.6 \mathrm{~mm}\left(.063^{\prime \prime}\right)$
$(1 / 16$ inch $)$	$(1 / 16$ inch $)$

THROTTLE CABLE INSPECTION / LUBRICATION

NOTE: Control cable casings are lined with a low friction sleeve and are factory lubricated for reliable operation. Periodic lubrication of cables is not required and could be detrimental to cable performance. Only cable ends must be periodically inspected and lubricated in accordance with the Periodic Maintenance Schedule (page 2.4). See Chapter 12 (Throttle Cable Removal) to lubricate cable ends at the throttle grip.

NOTICE

Do not kink, bend or twist inner cable or cable casing during removal or installation.

1. Remove triangular IAC cover from right side of motorcycle by pulling straight outward at each corner to release the three tabs.
2. Inspect cables for proper routing, smooth movement, and for damage to the external casing. Inspect the exposed inner cable for fraying, kinks, or corrosion. Replace any damaged cables or cables that are sticky or sluggish to return.
3. Spray each barrel end (A) with Victory Multi Purpose Lubricant 2872863.

4. After lubricating barrel ends, inspect cable free play.

Cruise Control Cable information is on page 2.11.

THROTTLE CABLE FREE PLAY

Check the amount of control grip movement from the rest position to the point of cable resistance.

Throttle Opening Cable Adjustment

1. With engine OFF and handlebars pointed straight ahead, loosen cable lock nuts by turning them counter-clockwise (viewed from throttle grip) until they stop against the throttle housing.
2. Turn both cable adjusters toward lock nuts until they lightly contact the lock nuts.
3. Turn throttle opening cable adjuster (front cable) out until freeplay is within specified range.
4. Hold adjuster in place and tighten lock securely (by hand) against the adjuster.

Throttle Closing Cable Adjustment

1. Hold throttle grip lightly in closed position.
2. Turn throttle closing cable (rear cable) adjuster out until you feel slight resistance at the adjuster.
3. Hold adjuster in place and tighten lock nut securely (by hand) against the adjuster.
4. Verify throttle grip moves smoothly and returns freely when released in all handlebar positions.

CRUISE CONTROL CABLE

(Cross Country model or if equipped with accessory)

1. Remove triangular IAC cover from right side of motorcycle by pulling straight outward at each corner to release the three tabs.
2. Inspect throttle body end of cruise control cable in area (A) for fraying and be sure end is secured in bracket (B). Inspect outer cable casing for damage.

3. Inspect exposed inner cable for fraying, kinks, or corrosion. Replace any damaged, frayed or corroded cables.
4. Spray each barrel end with Victory Multi Purpose Lubricant 2872863.

NOTE: The cruise control cable (if equipped) is not manually adjustable and does not require periodic adjustment.

FRONT BRAKE LEVER INSPECTION

1. Pull brake lever and release it. Lever should move smoothly without binding and return freely to the rest position.
2. Pull the lever. The lever should be firm not spongy. Bleed brakes and inspect system if brake lever is not firm.

FRONT BRAKE LEVER LUBRICATION

1. Remove nut (C), pivot screw (D), and lever. Lubricate screw, lever bushing, and lever cam (E) with Special Brake Grease (PN 2203685) or Victory All Purpose Grease.
2. Assemble lever, screw, and nut.
3. Tighten screw.
4. Hold screw and tighten nut.
5. Inspect lever movement as described for FRONT BRAKE LEVER INSPECTION above.

FRONT BRAKE LEVER REACH

Front brake lever "reach" (or distance to the hand grip) is adjustable. To adjust lever reach:

- Pull the lever away from grip (1) and hold.
- To INCREASE lever reach distance, turn dial (2) to align a lower number with arrow (3) on lever.
- To DECREASE lever reach distance, turn dial to align a higher number with the arrow.

CLUTCH LEVER LUBRICATION

1. Disconnect clutch cable from lifter arm by rotating arm (A) inward with pliers or adjustable wrench. Protect surface of lever arm or use a pliers or adjustable wrench with non-marring jaws.

2. Clean lower cable bushing and cable. Inspect inner cable wire for damage or frayed strands. Replace cable if damaged.
3. At handlebar end, pull outer cable casing (B) out of perch and carefully rotate inner cable out of perch and lever. Do not kink cable.

4. Remove nut (C). Push pivot bolt upward to remove it, then remove lever pivot bushing (D).

5. Clean all parts. Inspect bushings and lever for wear.
6. Inspect inner cable wire for frayed strands. Replace cable if frayed.
7. Lubricate both lever pivot and cable end bushing with Moly Assembly Paste PN 2871460 or Special Grease PN 2203685.
8. Assemble lever (with bushing) to perch.
9. Install pivot bolt and nut. Torque nut to $6 \mathrm{Nm}(52 \mathrm{lb}$-in $)$.
10. Grease cable end.
11. Rotate cable back through slot in perch, and push outer casing back into perch recess.
12. Lubricate lower cable and barrel end.
13. Rotate lifter arm inward with a pliers or adjustable wrench and attach cable to lifter arm.
14. Inspect clutch lever free play and adjust if necessary Be sure cable and lever operate smoothly without binding.

CLUTCH LEVER FREE PLAY (CABLE)

1. With handlebars pointing straight ahead, measure the clutch lever free play (E).

2. If adjustment is required, hold cable (F) and loosen adjuster jam nut (G).
3. Turn cable adjuster (H) in or out until clutch freeplay is correct.

4. Tighten adjuster jam nut securely to cable.

FRONT BRAKE FLUID LEVEL

1. Set vehicle upright on a level surface and turn handlebars until top of reservoir is level.

2. View fluid level through sight glass.
3. If low, check brake pads for wear (page 2.15) and check the brake system for leaks. Check for signs of fluid leaks around hoses, fittings, reservoir, and brake caliper pistons (behind brake pads).
4. To add fluid, remove reservoir cover screws, cover, and diaphragm.
5. Add DOT 4 Brake Fluid from a sealed container to the proper level.
6. Clean and dry all sealing surfaces of reservoir, reservoir cover, diaphragm, and diaphragm plate with a clean lint-free cloth.
7. If the diaphragm is extended, return it to the retracted (neutral) position (A).

8. Reinstall diaphragm, plate, and cover.
9. Torque screws to $\mathbf{2 5} \mathrm{lb}-\mathrm{in}$. (3 Nm).
10. Check for deterioration of hoses.

REAR BRAKE FLUID

1. Set vehicle upright on a level surface and inspect rear brake fluid reservoir level.
2. Level must be between MIN and MAX lines on reservoir.
3. If level is low, check brake pads for wear (page 2.15) and inspect rear brake system for leaks. Check for signs of brake fluid leaks around hoses, fittings, reservoir, and brake caliper pistons (behind brake pads).
4. To add fluid, remove reservoir cover with diaphragm by turning it counter-clockwise (as viewed from top).
5. Add DOT 4 Brake Fluid from a sealed container to bring level between MIN and MAX marks.
6. Clean and dry all sealing surfaces of reservoir, reservoir cover, diaphragm, and diaphragm plate with a clean lint-free cloth.
7. If diaphragm is extended, return it to the retracted (neutral) position (B).

8. Check for deterioration of hoses

FRONT BRAKE PAD INSPECTION

Wear indicator grooves are provided on each front brake pad to allow for a visual inspection without pad removal.
Inspect pads by viewing from rear of caliper.
Replace pads if worn to bottom of grooves or near the minimum thickness.
Refer to Chapter 15 to remove pads for further inspection or to replace if worn.

Minimum Thickness:
Front Pad: $1.5 \mathrm{~mm}(.060 \mathrm{in})$.

REAR BRAKE PAD INSPECTION

Wear indicator grooves are provided on each rear brake pad to allow for a visual inspection without pad removal. Inspect pads from top of caliper behind swingarm.

Replace pads if worn to bottom of grooves or near the minimum thickness.

Refer to Chapter 15 to remove pads for further inspection or to replace if worn.

Minimum Thickness:
Rear Pad: 1.5 mm (. 060 in .)

SHIFT PEDAL

1. Check all shift pedal and linkage fasteners to be sure they are tight. Torque values are shown on page 9.4.

2. Lubricate shift pedal pivot bushing and all pivots with Victory All Purpose Grease P/N 2872187 or Victory Multi-Purpose Lubricant.

REAR BRAKE PEDAL

1. Push brake pedal and release it. Pedal should move smoothly without binding and return freely to the rest position.
2. Push down on brake pedal. The pedal should be firm not spongy. Bleed and inspect rear brake system if pedal is not firm.
3. Lubricate rear brake pedal pivot bushing with Victory All Purpose Grease (P/N 2872187) or Multi-Purpose Lubricant (P/N 2872863).

4. Check brake pads for wear as outlined on page 2.15.

FOOT CONTROL ADJUSTMENT

The brake pedal and shift pedal can be adjusted to one of three positions. The controls are in the center position as delivered from Victory.

To move the controls to the front or rear position, do the following:

1. Use a 6 mm Allen wrench to remove screw (1).
2. Slide the control forward or rearward in its track until the threaded hole of the control aligns with the front (2) or rear (3) screw hole in the footrest support.
3. Install the screw and torque to $96 \mathrm{lb}-\mathrm{in}$. $(11 \mathrm{Nm})$.

4. After adjusting shift pedal position, the linkage rod must be adjusted to re-set pedal height.
5. Hold rod ends and loosen both jam nuts (4)

6. Turn linkage rod (5) until center of shift peg is 82.5102 mm above the floor board surface (see page 9.4).
7. Tighten jam nuts to $96 \mathrm{lb}-\mathrm{in}$. (11 Nm).

CRANKCASE VENTILATION SYSTEM

1. Inspect condition of breather hose (A) and hose clamps.

EVAPORATIVE EMISSION CONTROL SYSTEM (California Models)

1. Inspect all Evaporative Emissions Control system hoses and be sure all connection are securely attached.
2. Refer to Chapter 5 for a system diagram and component location.

FUEL FILTER

The fuel filter is attached to the electric fuel pump located inside the fuel tank (see Chapter 5). No periodic fuel filter maintenance is required, however, the fuel filter should be replaced at intervals specified in the Periodic Maintenance Table on page 2.4 .

FUEL SYSTEM INSPECTION

Inspect fuel line and system components in accordance with the Periodic Maintenance Table on page 2.4.

1. Remove IAC cover from right side (Chapter 3).
2. Inspect fuel line and fuel rail for signs of deterioration, damage, abrasion, cracks, leakage, or kinked areas.
3. Replace any components that fail inspection with genuine Victory replacement parts only.
4. Refer to Chapter 5 for a system diagram and component location.

A. WARNING

The fuel supply hose and fuel rail are subjected to high pressure. Replace with genuine Victory replacement parts to reduce the possibility of fuel line failure. Be sure fuel lines are routed properly and do not come in contact with sharp or hot objects, or anything that may cause wear or damage.

SPARK PLUG REMOVAL \& INSPECTION

WARNING

HOT COMPONENTS Wear insulated gloves and/or allow engine and exhaust to cool before handling these parts.

1. With engine at room temperature, grasp spark plug boot (A) at base to disconnect. DO NOT pull on wire or spark plug wire may be damaged.

2. Clean area around spark plug base with compressed air to remove loose debris.
3. Remove spark plugs and inspect for:

- Insulator damage
- Worn electrodes
- Deposits

SPARK PLUG INSTALLATION

1. Inspect spark plug gap with a wire gauge.
2. To adjust gap, bend ground electrode carefully using a spark plug gap tool.

3. Apply anti-seize compound sparingly to spark plug threads, avoiding the bottom 2 or 3 threads.
4. Torque spark plugs to specification.
5. Apply a light film of dielectric grease to each spark plug boot and install securely on spark plugs.

BATTERY

This motorcycle is equipped with a maintenance free battery which is located in front of the engine. DO NOT remove cell caps or add distilled water to the battery.

Refer to Chapter 16 for battery and charging system diagnostic procedures.

WARNING

Battery electrolyte is poisonous. It contains sulfuric acid. Serious burns can result from contact with skin, eyes or clothing. Antidote:

External: Flush with water.
Internal: Drink large quantities of water or milk. Follow with milk of magnesia, beaten egg, or vegetable oil. Call physician immediately.

Eyes: Flush with water for 15 minutes and get prompt medical attention.

Batteries produce explosive gases. Keep sparks, flame, cigarettes, etc. away. Ventilate when charging or using in an enclosed space. Always shield eyes when working near batteries. KEEP CHILDREN AWAY FROM BATTERY.

NOTICE

Whenever removing the battery, disconnect the negative (black) cable first. When reinstalling the battery, connect the negative (black) cable last.

Do not remove the battery cables while the engine is running. Doing so may damage the Electronic Control Unit (ECM).

Take great care not to reverse the battery leads when installing the battery. Reverse power applied to the ECM will damage it instantly.

BATTERY CHARGING

Refer to "BATTERY CHARGING - GENERAL" on page 16.7.

BATTERY STORAGE

When the motorcycle is not used for periods of one month or longer, charge the battery using the charging plug harness or remove battery from motorcycle and charge it. Store battery in a cool, dry place. (See Chapter 16).

WARNING

Battery charging can create explosive gasses; keep sparks, flames, cigarettes or anything that could ignite the gasses away. Provide adequate ventilation when charging in an enclosed space. Batteries contain acid that is caustic. Wear protective clothing and a face shield or protective eyewear when working with the battery. KEEP OUT OF REACH OF CHILDREN.

BATTERY INSPECTION

Battery terminals and connections should be kept free of corrosion. If cleaning is necessary, remove the corrosion with a stiff wire brush. Wash with a solution of one tablespoon baking soda to one cup water. Rinse well with tap water and dry off with clean rags. Coat terminals with dielectric grease.

1. Visually inspect the exterior of the battery. Replace battery if case damage is evident or if the case is swollen, deformed or leaking electrolyte.
2. To remove corrosion, remove battery from motorcycle and wash terminals with water and baking soda solution. Clean terminals, bolts, and cable ends with a brass wire brush. Apply a thin film of dielectric grease to the terminal bolt threads.
3. Measure battery voltage.

Specification: 12.5 Vdc minimum
4. If battery voltage is below 12.5 VDC , charge it thoroughly (refer to page 16.7). Replace battery if it will not accept a charge.

BATTERY REMOVAL

A. WARNING

Improperly connecting or disconnecting battery cables can result in an explosion and cause serious injury or death. When removing the battery, always disconnect the negative (black) cable first. When reinstalling the battery, always connect the negative (black) cable last.

1. Remove chin fairing (grill) (page 3.18).
2. Remove negative (-) battery cable (A) from battery terminal.
3. Lift the red protective boot (B) from the positive (+) cable end to expose the terminal. Remove the positive cable from the battery terminal.
4. Remove battery hold-down strap (C).

5. Remove battery.

BATTERY INSTALLATION

WARNING

Improperly connecting or disconnecting battery cables can result in an explosion and cause serious injury or death. When removing the battery, always disconnect the negative (black) cable first. When reinstalling the battery, always connect the negative (black) cable last.

NOTICE

On CB Radio equipped vehicles, be sure the CB antenna is installed and connected to the radio before connecting the battery.

1. Inspect battery tray for damage. Be sure tray fasteners (D) are tight, and foam pads (E) are in good condition and properly located.

2. Install battery in battery box with terminals facing forward.
3. Install battery hold-down strap.
4. Apply dielectric grease to terminal bolt threads.
5. Install positive (${ }^{(+)}$cable first. Torque bolt to specification.
6. Install red protective boot over positive (+) terminal.
7. Install negative cable. Torque bolt to specification.
8. Install chin fairing (page 3.18).

ENGINE COMPRESSION TEST

1. Warm engine to operating temperature, shift transmission into neutral and stop engine.
2. Disconnect spark plug caps and remove one spark plug.
3. Connect a spark plug to each cap and connect center electrode of plug to engine ground.
4. Install compression tester in spark plug hole (leave the spark plug in the other cylinder).
5. Open throttle and crank engine until needle on compression gauge stops rising (about 5 seconds).
6. Repeat procedure for other cylinder. Cylinder compression should be within 10% of each other.

High engine compression may indicate:

- Carbon deposits on piston crown / cylinder head
- Engine modification
- Addition of performance parts
- Faulty gauge

Low engine compression may indicate:

- Debris / carbon on valve face or valve seat.
- Worn piston and/or piston rings
- Piston ring stuck in the piston ring groove
- Leaking valves or head gasket
- Slow starter motor cranking speed
- Valve timing incorrect
- Faulty gauge

CYLINDER LEAKAGE TEST

If compression is low, perform a cylinder leakage test to determine where leakage is occurring. Follow instructions provided with test equipment.

ENGINE COMPRESSION TEST (WET)

If a leakage tester is not available, perform a wet cylinder compression test.

1. Pour $3-5$ cc of clean engine oil into one spark plug hole. Repeat cylinder compression test. Repeat for the other cylinder.
2. If compression increases substantially, inspect cylinder, piston, and rings. If compression does not increase, inspect valves and valve seats.

DRIVE BELT WEAR ANALYSIS

Internal Tooth Cracks (Hairline) OK to run, but monitor condition.

External Tooth Cracks
Replace Belt

Hook Wear Replace Belt

Missing Teeth
Replace Belt

Stone Damage Replace belt if damage is on edge

Fuzzy Edge Cord OK to run, but monitor condition.

DRIVE BELT TENSION GAUGE

Proper use of the belt tension gauge PV-43532 is important for accuracy. During the measurement procedure, be sure the gauge is seated squarely against the belt and in alignment with the belt centerline.

DO NOT attempt to check belt tension if the belt has been exposed to rain or washing within a 24 hour period or if the belt is hot from riding. Allow the belt to cool down to ambient temperature before measuring belt tension. Replace drive belt and both sprockets as a set if drive belt has over 5,000 miles $(8,000 \mathrm{~km})$ of service at the time of damage or failure.

DRIVE BELT TENSION - INSPECTION

WARNING

Care should be taken to be sure the motorcycle will not tip or fall while elevated. Severe personal injury or death may occur if the motorcycle tips or falls.

1. Secure motorcycle in an upright position.
2. Shift transmission into NEUTRAL.
3. ELEVATE rear wheel off the ground when checking deflection or adjusting the belt.
4. Do not attempt to check belt tension if the belt has been exposed to rain or washing within a 24 hour period or if the drive system is hot from riding. Allow the system to cool to room temperature ($60-80 \mathrm{~F} / 15-27 \mathrm{C}$) before measuring belt tension. Replace drive belt and both sprockets as a set if the drive system has over 5,000 miles ($8,000 \mathrm{~km}$) of service at the time of damage or failure.
5. See page 2.22 for instructions for proper use of belt tension gauge PV-43532.

Finding The Tight Spot In The Drive System

6. Use the tire valve stem as a reference. Rotate wheel in a CLOCKWISE rotation as viewed from belt side of motorcycle until valve stem is at the bottom. (Fig. 1)

Rotate clockwise only during this procedure
Fig. 1
7. Slide O -ring on belt tension gauge to the 10 lb . mark.
8. Place tape measure or ruler next to drive belt at midspan (Fig. 2) and align a major graduation mark on the ruler with the lower edge of the belt surface. (Fig. 3) Do not move the ruler from this position.

9. Place belt tension gauge squarely against belt at until push up on center plunger until O-ring just touches tool body. Record the total amount of deflection as measured on the ruler.
10. Rotate wheel 90 degrees (valve stem is at rearmost position). Measure and record the deflection.
11. Repeat measurements with the valve stem at the top and forward positions and record the deflection.
12. Compare all measurements and use the point of least deflection (tightest spot) as your reference point to determine if belt requires adjustment.
13. Rotate the wheel in normal drive direction (CLOCKWISE) 1-2 revolutions back to your reference (tightest) point.
14. If belt deflection is greater than specified, tighten the belt. If deflection is less than specified, loosen the belt. Refer to specification table on page 2.25 .

SPECIFICATIONS: DRIVE BELT

BELT DEFLECTION	
Model	Deflection @ 10 lbs . force
Cross Roads Cross Country	$32.0 \mathrm{~mm} \pm .5 \mathrm{~mm}$ $\left(11 / 4^{\prime \prime} \pm 1 / 32^{\prime \prime}\right)$

SONIC TENSION DATA

The following data is provided for use with the Gates 507C Sonic Tension Meter or an equivalent. Follow Steps 1-4 and the instructions included with your sonic tension meter.

Required Data For Sonic Tension Meter	Specification
Span	708.65 mm
Belt Width	28 mm
Belt Mass Constant	8.4
Tension (All 2008-2010 Models Except Vision 8-Ball)	$20 \mathrm{~Hz}(\pm 1 \mathrm{~Hz})$

SPROCKET INSPECTION

1. Inspect front and rear sprocket teeth (Chapter 11) for wear or damage from foreign material. Closely inspect drive belt condition at the same time.

DRIVE BELT CLEANING

Drive belt and sprocket service life is maximized and drive line noise minimized by proper cleaning. Cleaning interval is approximately every tire change, or more often if operated in dirty, dusty, or high debris environments.

1. Mix a few drops of mild dish soap with a cup of warm water a use a soft nylon brush to clean the belt and sprocket teeth.
2. Pay close attention to comer areas (A) where road debris and belt dust can collect.

3. Rinse thoroughly with clear water. Dry thoroughly.

NOTE: Do not inspect or adjust drive belt tension when the belt is wet. Improper adjustment will result.

DRIVE BELT ADJUSTMENT / ALIGNMENT

Rear Wheel Alignment / Belt Adjustment

WARNING

A mis-aligned rear axle can cause drive line noise and damage the drive belt, causing possible belt failure and loss of control of the motorcycle.

1. Remove both saddlebags (page 3.22).
2. Swingarm marks (A) and plate marks (B) are used as a reference for initial wheel alignment. Marks should be in same position on both left and right sides of wheel.
3. Loosen axie nut (C).

Marks are for initial alignment only. Refer to procedure for final alignment.
4. Safely elevate rear tire off floor.
5. Turn adjuster nuts (D) on left and right side of swingarm to achieve:

- Recommended belt tension
- Wheel alignment (marks equal both sides)

6. When belt tension is correct, check and adjust final wheel alignment as follows:

NOTE: To minimize change in belt tension, use LEFT SIDE adjuster only (E) to make final adjustments to belt alignment. Be sure to keep axle seated forward against axle adjusters during this procedure.

7. Rotate the wheel BACKWARD. Tighten LEFT rear axle adjuster until belt begins to track to right sprocket flange (outboard) during backward wheel rotation.

Rear Wheel Alignment - Final

8. Rotate the wheel in FORWARD direction. Loosen LEFT rear axle adjuster until belt moves off the right sprocket flange and begins to track to the left flange (inboard) during forward wheel rotation.

9. Tighten rear axle nut to $88 \mathrm{Nm}(65 \mathrm{lb}-\mathrm{ft})$.
10. Torque both axle adjuster nuts to $11 \mathrm{~N}-\mathrm{m}(8 \mathrm{lb}-\mathrm{ft})$.
11. Pump rear brake pedal several times to reset brake pad distance.
12. Verify wheel rotates smoothly and freely without drag when brake pedal is released.

HEADLAMP AIM INSPECTION

The top edge of the high beam must be 3 inches (7.6 cm) below the height of the widest part of the headlight and centered straight ahead at 25 feet (7.6 meters).
To check for proper headlamp aim:

- Set tire pressure (page 2.9) and rear suspension air pressure for load (page 2.31).
- Straddle motorcycle in an upright position and sit in the operator's seat.
- Turn ignition switch ON.
- Select HIGH BEAM.
- Compare to illustration and adjust if necessary.

HEADLAMP AIM ADJUSTMENT

Cross Roads

- Loosen adjustment nut (A).
- Move headlamp horizontally or vertically to proper position.
- Hold headlamp in position and tighten nut to 38 Nm ($28 \mathrm{lb}-\mathrm{ft}$).
- Verify proper aim after nut is tight.

Cross Country

- Remove headlamp bezel by pulling straight outward to release the clips (page 3.8).
- Vertical Adjustment: Loosen the adjustment screws (B) equally to lower the beam. Tighten the screws equally to raise the beam.
- Horizontal Adjustment: Tighten one screw and loosen the other equally. The beam will move in the direction of the tightened screw.
- Verify proper aim and install headlamp bezel.

SIDESTAND INSPECTION

1. Support the motorcycle in an upright position.
2. Inspect sidestand spring for damage or loss of tension. Be sure stand returns to fully retracted position.
3. Inspect sidestand for smooth movement.

4. Inspect sidestand pivot bolt nut for proper torque.
5. Replace sidestand if it is bent. Do not attempt to straighten sidestand.
6. Inspect sidestand pad for wear.

SIDESTAND PAD INSPECTION

Sidestand Pad Inspection

1. Inspect the sidestand rubber pad (A) for wear. Be sure pad is secured in place and not damaged or torn. Replace pad if worn to or beyond the wear mark (B). See page 2.29 for replacement procedure.

SIDESTAND \& SPRING REMOVAL

A warning

The sidestand spring is under tension. Wear eye and face protection when removing and installing the spring and sidestand. Be sure the vehicle is properly secured before you begin.

1. Sidestand will be moved between the UP (retracted) and DOWN (extended) position during removal and installation. Be sure vehicle is properly secured.

2. Remove sidestand pivot nut using a 15 mm socket while holding bolt with a 6 mm hex wrench.
3. Place sidestand in the DOWN position, then remove the bolt.
4. Grasp sidestand firmly and move it to the UP position.
5. Pull sidestand straight rearward against spring tension until mounting flange on sidestand is clear of the recessed mounting boss on the frame cradle.
6. Remove spring.
7. Installation: Attach spring to sidestand.
8. Lightly grease sidestand mounting boss on frame rail and the shouldered portion of the pivot bolt.
9. Place loose end of spring through hole in frame rail.
10. With sidestand in the retracted position (up), pull stand straight rearward against spring tension until the mounting flange on the sidestand drops into the recessed mounting boss on the frame cradle.
11. Swing sidestand to the extended position to align bolt hole and install bolt and nut.
12. Torque nut to 35 ft .lbs. (47.5 Nm) and wipe off any excess grease.Cycle the sidestand to be sure it moves freely, and returns to the fully retracted position.
13. Cycle the sidestand to be sure it moves freely, and returns to the fully retracted position.

SIDESTAND PAD REPLACEMENT (TYPICAL)

Sidestand Pad Removal

1. Remove side stand from frame.

2. Place sidestand in a soft-jawed vise.
3. Remove rubber pad with a pliers to expose the rivets.
4. Using an angle grinder, cut off the head of both rivets on the top side of the sidestand foot (A). Be careful to avoid grinding wheel contact with the finished area of the stand.
5. Drive rivets out of sidestand foot from top to bottom with a suitable drift punch (B).

Sidestand Pad Installation

1. Install new sidestand pad with open end on trailing edge of stand.

2. Install new rivets from top to bottom.
3. Invert sidestand and place washers over rivets.
4. Hold washers and rivets in place and set sidestand on a hard surface (such as the anvil of a vise) with hollow end of rivets facing upward. Push washers as far down as possible. Be sure washers are at least 1/16-1/8 inch $(1.5-3 \mathrm{~mm})$ below hollow end of rivets.
5. Peen hollow end of rivets with a commercially available rivet tool. Be sure rivets, washers and pad are secure.

NOTE: An alternative method is to use a center punch to start a flare on hollow end of rivet, then use a $1 / 4$ inch drift (flat) punch to complete the peening operation.
6. Apply touch up paint or primer to exposed bare metal.

REAR SUSPENSION / SWINGARM INSPECTION

WARNING

Care should be taken to be sure the motorcycle will not tip or fall while elevated. Severe personal injury or death may occur if the motorcycle tips or falls.

1. Sit astride the motorcycle. Compress the rear suspension several times and check for smooth and quiet operation.
2. Secure motorcycle with rear wheel elevated.
3. Grasp the rear most surface of the rear tire and attempt to move the wheel side-to-side. If there is movement at the front of the swingarm (A), check swingarm pivot nut torque ($88 \mathrm{Nm} / 65 \mathrm{lb}-\mathrm{ft}$) and swingarm bearings. See Chapter 13, Rear Suspension),

4. Rotate rear wheel. Check for smooth rotation of wheel bearings. Grasp wheel at top and bottom and attempt to move wheel side-to-side. If movement is detected in axle area (B) inspect axle nut torque ($88 \mathrm{Nm} / 65 \mathrm{lb}$-ft) and rear wheel bearings (Chapter 13). If abnormal noise is detected, inspect belt tension / alignment (page $2.23-2.25$) and brake pads (page 2.15).

5. Inspect rear shock for signs of oil leakage (Chapter 13).
6. Lift rear wheel up and down slightly with a pry bar while watching lower shock mount and lower strut mount on swingarm (C) for movement. Check fastener torque or replace spherical bearings if worn.
7. If radial movement is evident in upper rocker joints refer to Chapter 13 to remove shock and strut assembly for further inspection.

REAR SUSPENSION AIR PRESSURE ADJUSTMENT

To provide the most comfortable ride and proper ground clearance, adjust air pressure in the rear shock absorber as specified on the decal for total cargo and occupant weight.
Follow these guidelines to check and adjust air pressure:

- Rest bike firmly on sidestand on level ground.
- Remove all cargo from the saddlebags.
- Victory Air Pump \& Gauge 2876654 or PV-48909 is the preferred tool for checking and adjusting rear suspension air pressure. If not available, use a pressurized dry air source with a maximum line pressure of 110 PSI and the pressure gauge provided in the tool kit (or a similar 0-100 PSI tire pressure gauge).
- Use ONLY A DRY AIR SOURCE, such as a system with a water separator or airline dryer to prevent moisture from entering the shock. The shock has a small volume. Air pressure increases VERY quickly when using pressurized air.

NOTE: The shock has a small air volume. Each time pressure is checked with a tire pressure style gauge. approximately $4 \mathrm{PSI}(27.5 \mathrm{kPa})$ is lost to fill the volume of the gauge. Once you've set the pressure with the gauge, remove it quickly to minimize leakage, and expect to see a reduction from the previous reading of about 4 PSI if you re-check the pressure.

1. Remove right side cover.
2. Remove cap from air fitting (A).

3. Open the right saddlebag and locate pressure decal.
4. Read recommended air pressure for total cargo and occupant weight from decal.

MAX OPERATING PRESSURE 72 PSI (496 kPA)	
AIR SUSPENSION ADJUSTMENT	
Set desired pressure with bike unloaded on side stand	
Total Cargo ${ }^{3}$ Occupant weight (bss)	Air Pressure (psi)
100	0
125	0
150	0
175	0
200	0
225	9
250	15
275	25
300	29
325	34
350	39
375	45
400	52
425	58
450	65
475	70
500	72
MAX PRESSURE 72 PSI	

5. Screw hose fitting of gauge PN 2876654 securely onto air fitting and read air pressure on gauge.
6. To REDUCE air pressure, push bleed button (B) on gauge. Bleed pressure in small amounts to desired pressure. Remove tool hose from fitting and install cap.
7. To INCREASE pressure, install gauge on fitting. Pump handle (C) until pressure increases to desired amount. Remove hose and install cap.

DO NOT exceed 110 PSI (758 kPa) when using pressurized air to fill the shock.
DO NOT operate motorcycle with air pressure above 72 PSI (496 kPa) (pressure measured with motorcycle unloaded on side stand).

FRONT FORK / SUSPENSION INSPECTION

WARNING

Damaged, worn, or loose suspension components may cause loss of control, increasing the chance of a crash or possible injury. Damaged, worn, or loose suspension components must be repaired before the motorcycle is operated. See Chapter 12.

WARNING

Care should be taken to be sure the motorcycle will not tip or fall while elevated. Severe personal injury or death may occur if the motorcycle tips or falls.

1. Place motorcycle on sidestand and inspect inner fork tube area (A) and brake discs for signs of oil leakage. Replace seals if leaking (Chapter 12).

2. Clean fork tubes with mild soap and water as required to remove bugs, tar, or buildup which may cause seal wear or leakage.
3. Inspect outer surfaces of inner fork tubes for scoring, scratches, and damage from foreign objects.
4. With motorcycle upright, apply front brake and pump forks through travel range several times. Fork operation should be smooth without abnormal noise.
5. Verify all fasteners are tight. Refer to Chapter 12 for front wheel and suspension torque specifications, and Chapter 15 for brake system torque specifications.
6. Secure motorcycle with front wheel elevated.
7. Turn handlebars from full left to full right and inspect for smooth, free movement.
NOTE: Be sure hoses, cables, and wiring are not interfering with handlebar rotation.
8. Point front wheel straight ahead, grasp fork tubes and pull/push fork tubes front to back (B).

9. If steering binds, feels rough or uneven, or if movement is detected at steering stem, adjust or replace steering head bearings as necessary. Refer to Chapter 12.
10. Rotate front wheel and inspect for smooth rotation of front wheel bearings. If bearings are rough or noisy, replace front wheel bearings (Chapter 12).
11. Turn handle bars against a fork stop. Attempt to move wheel side-to-side (C). If movement is observed, inspect front axle, wheel, and bearings (Chapter 12).

MAINTENANCE

FUSE REPLACEMENT

1. Remove right side cover (page 3.21).
2. Pull latch (A) on each side of fuse box cover to release.
3. To remove fuse box from mount, lift tab (B) and slide box in direction shown on decal.
4. Accessory power fuse is located in holder (C).

NOTICE

Use only the recommended fuse to prevent electrical system damage.

FASTENERS

Inspect all fasteners on the vehicle to be sure they are tight. Refer to the appropriate chapter as required for torque specifications.

LOCK AND IGNITION SWITCH LUBRICATION

1. Insert spray nozzle of Victory Multi-Purpose Lubricant into the ignition switch and each lock cylinder and spray for 1-2 seconds.
2. Insert key and turn it to all positions to distribute the lubricant.
3. Wipe any excess lubricant from lock or switch.

CLEANING

NOTE: Refer to page 2.3 for maintenance product part numbers, and the Owner's Manual for more information. Pure Victory cleaning and polishing products and accessories have been specifically designed to offer the best care possible for a Victory motorcycle. In addition to the products recommended here, Pure Victory products are also available for removing scratches, scuffs, and swirls in paint or clear coat, cleaning or enhancing black or silver engines, cleaning tires and wheels, and removing brake dust. Visit www.purevictorypolishes.com for all cleaning product needs.

Before washing the motorcycle, do the following:

- Be sure exhaust has cooled completely. Cover exhaust openings with a plastic bag secured with a strong rubber band to prevent water from entering exhaust system.
- Check spark plugs, spark plug wires, oil dipstick, fuel cap, and other fill caps are properly seated.
- Avoid spraying the air box / air filter area or electrical connectors and wiring.
- Remove excess dirt with low pressure water. Use as little water as possible near air intake or exhaust openings. Dry thoroughly before starting the engine or operating the motorcycle.
- Make sure brakes are functioning properly before operating the motorcycle.
- Do not use abrasive cleaners. Paint wear or other cosmetic damage can occur if abrasives are used.

NOTICE

Electrical components may be damaged by water. Do not allow water to contact electrical components or connectors.

NOTICE

Do not use pressurized water to wash the motorcycle. Water may seep in and deteriorate wheel bearings and seals, brake caliper assemblies, brake master cylinders, electrical connectors, steering head bearings, and transmission seals if excessive pressure is used.

NOTICE

Do not use glass cleaners, water or soil repellents, and petroleum or alcohol based cleaners on the windshield (if equipped), as these products can damage the windshield.

WASHING, WAXING, POLISHING, APPLYING PROTECTANTS

(NOTE: For Windshield care and special information regarding care of Suede finish, see page 2.35.

A. WARNINg

Do not use a protectant on the seats, handgrips, or footpegs that leaves a slippery coating after it dries. If these surfaces are slippery, you may have difficulty holding your position on the motorcycle while riding, which may cause you to lose control of the motorcycle. Follow manufacturer's instructions and safety precautions on wax, polish, and protectant labels to prevent injury or damage.

There are two styles of motorcycle washing and there is a Pure Victory Polish product for each style.

Bucket Wash

This is the conventional way of washing a motorcycle. Use Pure Victory Bike Wash Concentrate, a concentrated gentle product formulated to clean without diminishing the life of any durable polish. This product does not contain alkalis, acids or abrasives and is formulated to perform as a wetting agent to soften bugs, road grime and soil, and to prevent abrasion from a wash mitt or cloth. This product also decreases drying time without streaking or spotting. Follow complete directions on the label.

Spray-Rinse-and-Ride Wash

This is the new way to clean a Victory motorcycle quickly and easily, then resume riding. Pure Victory Spray Rinse and Ride bike wash is safe and will not harm any surface that water won't harm. This product can be mixed 50/50 with water for frequent washing. Spray the product on surface after they are cool to the touch. DO NOT spray on a hot motorcycle. When applied, this product softens dirt, soil, bugs, and road grime. Follow complete directions on the label.

Quick Clean-Ups

For quick clean-ups or when water is not available, use Pure Victory Spray \& Wipe Instant Detailer, it's a complete spray and wipe product designed to clean and polish all surfaces, works quickly and easily, and is silicone-free so it leaves no oily or white residue. It provides protection from UV rays, acid rain, and dirt, will remove bugs, road tar, and road grime from windshields, painted parts, and chrome. It is safe for all surfaces, including pin striping, custom paint, murals, Plexiglas, Lexan, Acrylic or factory-coated windscreens. It's non-streaking, and it provides polish protection and a water repellent shine. Follow complete directions on the label.

WINDSHIELD CARE

Rinse windshield with water to remove loose dirt and dust. Wash the windshield using one of the Pure Victory wash products described on page 2.34 (follow directions on the container for the product you choose) then rinse (if recommended in the directions) and wipe with a Pure Victory Microfiber Chamois or Plush Microfiber Towel to dry virtually spot free.

NOTICE

Do not use glass water and soil repellents, petroleum or alcohol based cleaners as these products can damage the windshield.

NOTICE

Windshield material is polycarbonate plastic. Do not use cleaners or rain protective products meant for glass surfaces on the windshield.

STORAGE

NOTE: Refer to page 2.3 for cleaning products.
To prevent storage damage due to long-term storage (60 days or more) the following guidelines should be followed.

1. Top off fuel tank with fresh fuel and add fuel stabilizer to fuel.
2. Run motorcycle for 15 minutes or more to distribute fuel stabilizer throughout fuel system.
3. Clean motorcycle completely.
4. Dry machine thoroughly and wax all painted surfaces.
5. Change engine oil as outlined in Chapter 2.
6. Lift and support the motorcycle securely to take some of the weight off of front and rear wheels ().
7. Secure a plastic bag over the exhaust outlets to prevent moisture from entering the exhaust system.
IMPORTANT: Make certain exhaust system is cool prior to securing plastic.
8. Remove battery and charge it.
9. Store battery in a cool, dry area and charge it once a month.
10. Cover motorcycle with a genuine Victory cover, or a covering made of fabric that allows for adequate ventilation. Do not use plastic or tarps, as corrosion may result.
IMPORTANT: Starting the motorcycle periodically during storage is not recommended. Water vapor is a by-product of the combustion process, and corrosion may result unless the engine is operated long enough to bring the oil and exhaust system to normal operating temperature.

SUEDE FINISH CARE

Suede paint is different from Victory's usual high gloss finish. Like suede fabric, suede paint changes as you interact with the finish. It will change with time, exposure to elements, and use. Although the quality of the paint is not affected by these changes, special care is required when cleaning a suede finish.
Suede paint cannot be buffed out if it becomes scratched or scuffed. If polished, the finish will become less flat or matte. This finish cannot be repaired if it receives heavy damage like a scratch or a chip.

Suede Finish Cleaning Instructions

1. Spray Pure Victory Polish Suede Finish Cleaner (\#90949) directly on all suede bodywork.
2. Using a Pure Victory Polish 100% Microfiber Polishing Towel (\#90962), wipe cleaner into the surface, then wipe dry using a clean, dry surface of the towel.
3. After suede bodywork is clean and dry, apply Pure Victory Polish Suede Finish Protectant to maintain and protect the beauty of your Victory Motorcycle.

Suede Finish Protectant Instructions

1. Spray Pure Victory Polish Suede Finish Protectant (\#90950) onto clean suede bodywork and use Polishing Towel (\#90962) or Microfiber Applicator (\#90965) to rub protectant thoroughly into the surface.
2. Using a clean, dry microfiber towel, wipe surface to achieve that showroom-new Suede Finish.
IMPORTANT: Be sure to apply Pure Victory Polish Suede Finish Protectant after every cleaning.

MAINTENANCE

NOTES

CHAPTER 3 FRAME-BODY-EXHAUST

SAFETY 3.2
3.2
GENERAL PRECAUTIONS3.3
GENERAL INFORMATION 3.3
HOW TO USE THIS CHAPTER 3.3
REMOVAL / INSTALLATION PROCEDURES - FRONT BODY
FRONT FENDER 3.43.4
GNITION SWITCH / IAC COVER REMOVAL / INSTALLATION 3.5
MIRRORS 3.5
WINDSHIELD (CROSS COUNTRY) 3.6
WINDSHIELD (CROSS ROADS) 3.7
HEADLAMP BEZEL 3.8
HEADLAMP (CROSS COUNTRY) 3.8
HEADLAMP ASSEMBLY VIEW (CROSS COUNTRY) 3.9
HEADLAMP (CROSS ROADS) 3.10
HEADLAMP ASSEMBLY VIEW (CROSS ROADS) 3.11
SPEAKER GRILL 3.12
FAIRING (CROSS COUNTRY) 3.12
DASH PANEL 3.13
FAIRING MOUNT ASSEMBLY VIEW (CROSS COUNTRY) 3.14
FAIRING MOUNT REMOVAL 3.15
INSTRUMENT CLUSTER / SPEAKER / SPEAKER VOLUME 3.16
FAIRING TRIM / FRONT TURN SIGNAL ASSEMBLY VIEW 3.17
VISOR 3.17
SPEEDOMETER / SPEEDOMETER MOUNT (CROSS ROADS) 3.17
CHIN FAIRING (INNER GRILL) 3.18
CHIN FAIRING (OUTER AND REAR) 3.18
HIGHWAY BARS 3.19
INSTRUMENT BEZEL (CROSS COUNTRY) 3.20
REAR BODY
SIDE COVER REMOVAL 3.213.21
SEAT 3.21
SADDLEBAG 3.22
ANTENNA / ANTENNA MOUNT 3.22
SADDLEBAG ASSEMBLY VIEW 3.23
REAR FENDER / SADDLEBAG MOUNT 3.24
TAIL LIGHT / TURN SIGNAL ASSEMBLY VIEW 3.25
FLOORBOARD / FOOT CONTROL MOUNTING 3.26
PASSENGER FOOTREST MOUNTING 3.27
EXHAUST SYSTEM 3.28
ASSEMBLY VIEW - EXHAUST COMPLETE 3.28
ASSEMBLY VIEW - MUFFLER 3.29
ASSEMBLY VIEW - HEAD PIPES 3.30

SAFETY

GENERAL PRECAUTIONS

This section covers the removal and installation of the frame body panels and exhaust system. Always replace exhaust system sealing gaskets when exhaust components are removed. Inspect the system for leaks after installation.

```
A. warning
Gasoline is extremely flammable and explosive under certain conditions.
Always stop the engine and refuel outdoors or in a well ventilated area.
Do not smoke or allow open flames or sparks in or near the area where
refueling is performed or where gasoline is stored.
Do not overfill the tank. Do not fill the tank neck above the fuel tank insert.
Leave air space to allow for fuel expansion.
If you get gasoline in your eyes or if you swallow gasoline, see your doctor
immediately. Never try to syphon gasoline using mouth suction.
If you spill gasoline on your skin or clothing, immediately wash it off with
soap and water and change clothing.
Never start the engine or let it run in an enclosed area. Gasoline powered
engine exhaust fumes are poisonous and can cause loss of
consciousness and death in a short time.
```


WARNING

The engine exhaust from this product contains chemicals known to cause cancer, birth defects or other reproductive harm.

AWARNING

Never run the engine in an enclosed area without a properly functioning exhaust gas evacuation system connected to the product.

AWARNING

Engine exhaust from this product contains poisonous carbon monoxide gas that can cause loss of consciousness and may lead to death.

AWARNING

Improper repairs or service can create unsafe conditions that may cause serious injuries or death to your customers or others.

AWARNING

Engine and exhaust components get hot and remain hot for a period of time after the engine is stopped. Wear insulated protective clothing or wait for components to cool sufficiently before working on the machine.

AWARNING
Modifications to this motorcycle not approved by
Victory may cause loss of performance, excessive
emissions, and make the machine unsafe for use.

A WARNING

Modifications to this motorcycle not approved by Victory may cause loss of performance, excessive emissions, and make the machine unsafe for use

3.2

GENERAL INFORMATION

SPECIAL TOOLS

- PV-49955 Body Panel Tool Kit or commercially available equivalent.

HOW TO USE THIS CHAPTER

- Body components in this chapter are arranged by their general location on the motorcycle - either FRONT or REAR body. (Fuel tank removal is in Chapter 5).
- For torque values of fasteners, fastener type, fastener location, and special notes refer to the ASSEMBLY VIEW for the component or group of components if provided.
- Most of the body panel fasteners have a 4 mm internal hex drive or a 10 mm hex head drive.
- For specific removal and installation steps refer to the REMOVAL / INSTALLATION PROCEDURE for the individual component.
- Use care when removing and installing cosmetic body parts. Some parts have friction fit tabs in addition to mechanical fasteners. Apply pressure as close to a tab as possible, supporting both parts until the tab releases or connects.
- Work carefully at first. Read the entire procedure before you begin so you are familiar with the parts.
- A non-marring wedge is essential to lift edges of mating parts without damage. Body Panel Tool Kit PV-49955 is recommended.

REMOVAL / INSTALLATION PROCEDURES - FRONT BODY

FRONT FENDER

Removal

1. Remove (A).
2. Carefully remove fender between the fork legs.

Installation

1. Install fender and align mounting holes.
2. Loosely install all screws with nuts.
3. Tighten all screws evenly to specification.

IGNITION SWITCH / IAC COVER REMOVAL / INSTALLATION

1. Grasp ignition switch cover (left side) or Idle Air Control (IAC) cover (right side) and pull outward to release 3 clips (A).

Installation

1. Be sure clips are in place and in good condition.
2. LH cover - route front spark plug wire below top of cover.
3. Push cover evenly inward to install.

MIRRORS

Removal

1. Loosen jam nut (counterclockwise).
2. Rotate mirror to remove.

Installation

1. Screw jam nut to top of thread on mirror shaft.
2. Screw mirror into perch until bottomed, then back off to approximate angle required for rear view.
3. Screw jam nut until bottomed against perch.
4. Hold mirror shaft in position and tighten jam nut to specified torque.
5. Adjust mirror head to proper rear viewing angle.

WINDSHIELD (CROSS COUNTRY)

Removal

1. Loosen all screws (A) about $1 / 2$ turn.
2. Support windshield and completely remove all screws and windshield.

Installation

1. Fairing removal is not required for windshield installation. Place windshield on support and align screw holes.
2. Start all screws and tighten until the shoulder of each screw is close to the windshield.
3. Tighten each screw, carefully aligning the shouldered portion of the screw with the hole in the windshield. Be sure shoulder of screw passes through hole in windshield and bottoms on the support bracket. Push or pull lightly on center of windshield if necessary to align the last screw.
4. Torque all screws evenly to specification. Do not overtighten screws or windshield may be damaged.

WINDSHIELD (CROSS ROADS)

Removal

1. Loosen (4) mount screws (A) and lift windshield off forks with bracket attached.

Installation

1. Apply Loctite 242 (non-permanent) Threadlocker to threads of carriage bolts. Assemble windshield to bracket as shown below, with rubber washers on each side of windshield spacer sleeve.
2. Torque windshield nuts (B) evenly to specification. Do not overtighten screws or windshield may be damaged.
3. Start (4) mount screws (A) in upper and lower triple clamps. Pull washers out against screw heads.
4. Set windshield bracket in place between triple clamp and washers.
5. Torque mount screws to specification.

HEADLAMP BEZEL

Removal

1. Using body tool PV-49955, pry one edge of bezel from fairing then pull straight forward to release clips. Do not bend or rotate bezel during removal.

Installation

1. Align tabs with spring clip slots.
2. Push straight inward until seated.

NOTE: Headlamp removal is on page 3.8.

HEADLAMP (CROSS COUNTRY)

Also refer to Assembly View on following page.

Removal

1. Remove headlamp bezel (page 3.8).
2. Remove two upper screws (A) and 2 lower screws (B).
3. Slide headlamp out of fairing.

4. Note orientation of bulbs in headlamp. Top bulb wiring harness (C) faces left.
5. Lift tab to disconnect headlamp wire harness or turn each bulb socket $1 / 4$ turn to remove socket with wires attached. Do not tough glass surface of bulb. Bulb can be cleaned with isopropyl alcohol to remove oil residue if contaminated.

Installation

1. Note wire harness tag marked "TOP BULB" for proper installation in upper headlamp socket (yellow wire is top and green is bottom). Connect wires or install bulbs in scockets.

2. Torque mounting screws to specification.
3. Install headlamp bezel.

HEADLAMP ASSEMBLY VIEW (CROSS COUNTRY)

3.9

FRAME-BODY-EXHAUST

HEADLAMP (CROSS ROADS)

Removal

Also refer to Assembly View on following page.

1. Remove upper screws (A).
2. Remove (2) lower screws (B) (access through slot in turn signal stalk).
3. Remove headlamp cover

4. Note orientation of bulbs in headlamp. Top bulb wiring harnessed) faces left
5. Lift tab to disconnect headlamp wire harness or turn each bulb socket $1 / 4$ turn to remove socket with wires attached. Do not tough glass surface of bulb. Bulb can be cleaned with isopropyl alcohol to remove oil residue if contaminated.

HEADLAMP ASSEMBLY VIEW (CROSS ROADS)

SPEAKER GRILL

Removal

1. Using body tool Pry outward carefully in area shown to release one edge of grill then pull straight outward to release all tabs. Do not bend or rotate the grill during removal.

FRONT FAIRING (CROSS COUNTRY)

Removal

1. Remove headlamp bezel and headlamp (page 3.8).
2. Remove both speaker grills (page 3.12).
3. Remove screws indicated below.

4. Grasp fairing by the upper edge (near the visor) and in the lower center headlight opening. Pull forward on the bottom edge and then the top to remove.
5. Disconnect turn signal wires (push small white tab).

Installation

1. Place the two tabs (A) on the fairing into the slots on the front support.
2. Be sure wires are not trapped in area (B).
3. Pull the fairing down and forward in area (C) to snap fairing alignment pin into the hole in the front support.

4. Install screws and torque to $4.0 \mathrm{Nm}(36 \mathrm{lb}-\mathrm{in})$.
5. Install speaker grills (page 3.12), headlamp (page 3.8), headlamp bezel (page 3.8), and windshield (page 3.6, if removed).

DASH PANEL

Also refer to Fairing Assembly Views page 3.14 .

1. Remove fairing (page 3.12) and windshield (page 3.6).
2. Remove (6) screws indicated below.

3. Remove (2) screws above the instruments.

4. Remove (2) screws located underneath the information display area.

FAIRING MOUNT ASSEMBLY VIEW (CROSS COUNTRY)

NOTE: Fairing mount can be removed with inner fairing, dash panel, speakers (and related wiring), radio, and fairing wire harness in place. The left and right handlebar switches and the left and right main wire harnesses must be disconnected from mating connectors inside the fairing and the P-Clamps (A) removed. See Fairing Mount Assembly removal this chapter.

FAIRING MOUNT REMOVAL

1. Remove fairing (page 3.12) and.
2. Cut tie straps (A). Radio(s), radio fuse, and instrument cluster harnesses (B) can remain connected.
3. Remove P-Clamp fasteners (C) for left and right wire harnesses. Separate any associated connectors (D)
for main harnesses and any that are routed through the two openings in the fairing mount bracket (handlebar switch wires and radio antenna cable). Disconnect the radio LCD display harness (routed below the radio).
4. Remove (4) mount bolts (D) and lift fairing mount assembly upward off handlebar clamp, then forward to remove. Check for any remaining wires attached.

INSTRUMENT CLUSTER / SPEAKER / SPEAKER VOLUME

FAIRING TRIM / FRONT TURN SIGNAL ASSEMBLY VIEW

SPEEDOMETER / SPEEDOMETER MOUNT (CROSS ROADS)

VISOR

CHIN FAIRING (INNER GRILL)

Removal

1. Remove (4) screws with washers (A).

2. Push grill to right side until tabs on left edge are clear of left outer chin fairing.
3. Remove grill.

Installation

1. Engage tabs on right edge of fairing grill with right outer chin fairing.
2. Push fairing toward right side and tip inward to engage left side tabs with left outer chin fairing.
3. Align holes and install screws with washers.
4. Tighten screws to specified torque.

CHIN FAIRING (OUTER AND REAR)

Removal

1. Remove oil cooler mount nut (B) (on left side only).
2. Remove lower screw (C)
3. Remove upper and lower screws (D).
4. Remove rear chin fairing screw (E).

Installation

1. Reverse removal steps.

HIGHWAY BARS

Removal (Cross Roads)

1. Slide boot (A) off top mount.
2. Remove fasteners (B) (M15).

Installation

1. Align mount holes and loosely install all fasteners.
2. Tighten all fasteners.

Removal (Cross Country)

1. Remove fasteners (C).
2. Remove fasteners (D).

Installation

1. Align mount holes and loosely install all fasteners.
2. Tighten all fasteners.

Removal (Cross Country Ton Cover)

1. Remove fasteners (E).
2. Lift cover to release pegs from grommets (F). Installation
3. Lubricate grommets with soapy water.
4. Align pegs and push to seat in grommets.
5. Align mount holes and loosely install all fasteners.
6. Tighten all fasteners.

REAR BODY

SIDE COVER REMOVAL

1. Pull corners of left or right cover evenly straight outward to disengage each tab (A) from rubber grommet (B).

Installation

1. Be sure rubber grommets are in place and not dislodged.
2. Lubricate rubber grommets with mild soap and water solution. Push cover evenly inward on all 3 corners until tabs are securely engaged.

SEAT

Removal

1. Remove side covers.
2. Remove seat bolt (C) on each side.

3. Lift front of seat upward and pull forward to disengage tab at rear of seat. Disconnect wire harness for heated seat (if equipped).

Installation

1. To install, reverse above process. Be sure rear tab of seat is engaged in slot.
2. Tighten seat bolts to specification.

INSTRUMENT BEZEL (CROSS COUNTRY)

Bezel removal is not required for removal of dash panel or other fairing parts. Do not attempt to remove the bezel without first removing the dash panel.

Removal

1. Remove dash panel (page 3.13).

2. With dash panel removed, carefully pry inner tabs (A) and push bezel toward front side of dash until tabs are released.

3. Carefully pry outer tabs (B) and push bezel toward front side of dash to remove.

Installation

1. Reverse removal procedure to install bezel. Align bezel with opening in dash panel.
2. Place outer tabs into opening and hook tabs on inside edge of dash.
3. Press inner edge of bezel toward dash until it snaps into place and all tabs are engaged with the inside edge of dash panel.
4. Install dash panel.

SADDLEBAG

Removal

1. Open saddlebag lid.
2. Lift each D-ring and rotate counterclockwise $1 / 4$ turn from the horizontal position to the vertical position to release the pin. Do not remove the D-ring pins from the saddlebag.

3. Tip bag outward slightly away from bracket and lift bag up off muffler support to remove.

Installation

1. Set bag in place on muffler support.
2. Rotate each D-ring to the vertical position.
3. Move saddlebag until D-ring pins align with holes on bag bracket.
4. Hold light pressure inward on saddlebag and (if necessary) rotate both D-ring pins back and forth from vertical slightly until slot of pin engages latch wire on saddlebag bracket.
5. When both pins are engaged, rotate each pin $1 / 4$ turn counterclockwise until locked.
6. Pull lightly outward on front and rear of bag to ensure pin is secured.
7. Close and lock the saddlebag lid.

ANTENNA / ANTENNA MOUNT

SADDLEBAG ASSEMBLY VIEW

REAR FENDER / SADDLEBAG MOUNT

3.24

TAIL LIGHT I TURN SIGNAL ASSEMBLY VIEW

FLOORBOARD / FOOT CONTROL MOUNTING

PASSENGER FOOTREST MOUNTING

EXHAUST SYSTEM
ASSEMBLY VIEW - EXHAUST COMPLETE

ASSEMBLY VIEW - MUFFLER

MUFFLER REMOVAL

1. Remove saddlebags
2. Remove rear bolts (A).
3. Remove shield clamps (B).
(See clamp detail below).
4. Move end of muffler to loosen joint.
5. Remove muffler.

MUFFLER INSTALLATION

1. Install muffler with clamp to head pipe or crossover pipe.
2. Loosely install rear bolts (A) and draw muffler level with bracket. Do not tighten.
3. Rotate clamps to proper position and torque fastener.
4. Torque rear bolts.
5. Install shields and torque clamps and fastener (right side).

NOTE: Left muffler can be removed complete with shield attached by loosening crossover pipe clamp (C) and removing muffler with crossover pipe.

ASSEMBLY VIEW - HEAD PIPES

HEAD PIPE REMOVAL

1. Remove saddlebags and mufflers.
2. Remove right passenger footrest bracket fasteners. (Page 3.27).
3. Remove screw (A) from left side of bracket.
4. Remove screw (B) from left side of bracket.
5. Loosen front head pipe clamp (C).
6. Remove rear flange nuts (D).
7. Pull outward and downward on rear head pipe to loosen joint (E).

HEAD PIPE INSTALLATION

1. Install new gaskets and assemble head pipe loosely to engine with the passenger footrest bracket.
2. Start screws A and B to roughly align head pipe bracket. Do not tighten.
3. Tighten front flange nuts (F) then tighten rear (D). Be sure bracket is in contact with engine case in area (B) BEFORE tightening head pipe flange nuts.
4. Tighten screw (B) then (A) to specification.
5. Tighten clamp (C) to specification.
6. Connect oxygen sensors and install muffiers.
7. Remove front flange nuts (F).
8. Clean any oil residue from entire exhaust system.
9. Start engine and inspect for leaks. Install saddlebags.
10. Disconnect oxygen sensors at the connector.

Do not attempt to remove the sensor wire at the sensor.
10. Remove head pipe with rear passenger footrest bracket.

CHAPTER 4 LUBRICATION \& COOLING

OILING SYSTEM 4.2
OPERATION 4.2
TROUBLESHOOTING 4.2
SPECIAL TOOLS 4.2
OILING SYSTEM DATA 4.3
SPECIFICATIONS - LUBRICATION 4.3
4.4
OIL FLOW
4.4
DIAGRAM
OIL COOLER
4.5
ASSEMBLY VIEW - OIL COOLER AND LINES
4.6
OIL COOLER INSPECTION / CLEANING
4.6
4.6
OIL COOLER REMOVAL 4.7
OIL PRESSURE INSPECTION 4.8
LUBRICATION OIL PRESSURE 4.8
COOLING OIL FLOW INSPECTION 4.8
OIL PUMP
OIL PUMP REMOVAL 4.94.9
OIL PRESSURE RELIEF VALVES 4.10
OIL PUMP INSPECTION 4.11
OIL PUMP DISASSEMBLY 4.12
OIL PUMP ASSEMBLY 4.13
OIL PUMP INSTALLATION 4.15

OILING SYSTEM

OPERATION

The engine must be running in order to perform some of the procedures in this section. Read, understand and follow the warnings and cautions contained in this section.

The oil pump has two sets of internal gerotors. One set provides lubrication pressure and the other provides cooling oil pressure. There is a separate pressure relief valve located on the oil pump for each oiling system.

The engine must be removed from the frame and disassembled to access the oil pump. Use the troubleshooting charts contained in this chapter before removing and disassembling the engine.

Check lubrication side oil pressure any time an engine is making objectionable noises that appear to be coming from rotating parts. Check oil pressure before the engine is disassembled. Re-check oil pressure following a repair.

Cooling oil pressure troubleshooting is accomplished by verifying cooling oil flow as opposed to cooling oil pressure. See oil pressure testing on page 4.7.

A. warning

DO NOT loosen any oil line connections with the engine running, or within 30 minutes of operation. Oil inside the lines could be under pressure.

A warning

Never run an engine in an enclosed area. Exhaust contains poisonous carbon monoxide gas that can cause loss of consciousness or death. Operate the engine in an open area or with an exhaust evacuation system connected and functioning properly.

A warning

The engine components, oil and exhaust system become hot during operation and remain hot for a period of time after the engine is shut off. Wear eye protection and heat-resistant garments for hands and arms if working on a hot engine or wait until the components have cooled sufficiently before working on the machine.

TROUBLESHOOTING

LOW OIL PRESSURE	HIGH OIL PRESSURE		
Incorrect oil being used or low oil level	Incorrect oil being used		
Engine temp above test temperature range	Additives added to oil to increase viscosity		
Damaged O-rings or leaks at pipes or fittings	Engine temp below test temperature range		
Damaged or worn oil pump or oil pump drive	Restricted oil passages		
Pressure relief valve			
stuck open			
Damaged engine			
bearings/excessive			
engine wear.		\quad Pressure relief valve	stuck closed
:---:			

SPECIAL TOOLS

Oil Pressure Gauge PV-43531
Moly Assembly Paste PN 2871460
5 mm Ball Drive Allen Socket (commercially available)

OILING SYSTEM DATA

SPECIFICATIONS - LUBRICATION

LUBRICATION \& COOLING SYSTEM

Item		Standard	Service Limit
Engine Oil Capacity (After Disassembly)		4.75 Liters (5.0 U.S. qts)	Not Applicable
Engine Oil Capacity (At Change) Fill to full line with the engine at operating temperature.		Approximately 4.25 Liters (4.5 U.S. qts)	Not Applicable
Recommended Engine Oil If Victory 20W/40 is not available, use motorcycle oil suitable for wet clutches (such as those with JASO MA rating). DO NOT use additives of any kind.		Victory 20W/40 for all operating temperatures.	Not Applicable
Oil Pressure @ 3000 rpm (Lubrication System) Measurements must be taken with engine at operating temperature $\left(82^{\circ} \mathrm{C} / 180^{\circ} \mathrm{F}\right)$ and specified Victory Engine Oil		$552 \mathrm{kPa} \quad(80 \mathrm{psi})$	Readings should be within 20% of the specifications. Minimum Lubrication Pressure $276 \mathrm{kPa}(40 \mathrm{psi})$
Oil Pressure (Cooling System)		No measurement. See page 4.7.	-
Oil Pump Clearances	Rotor Tip Clearance	. 12 mm (.005")	. 18 mm (.007")
	Pump Body Clearance	. 10 mm (.004")	$.26 \mathrm{~mm}\left(.010^{\prime \prime}\right)$
	Pump End Clearance	. 025 mm (.001")	. 10 mm (.004")
	Cooling Rotor Width	14.96 mm (.5889 ${ }^{\prime \prime}$)	14.90 mm ($5866{ }^{\prime \prime}$)
	Lubrication Rotor Width	9.99 mm (.3933")	9.90 mm ($3897^{\prime \prime}$)
	Shaft End Play (Check assembly of pump if excessive)	2.0 mm (.080")	$\pm .5 \mathrm{~mm}\left(.020^{\prime \prime}\right)$

Fastener Torque Specifications - Lubrication \& Cooling		
Description	Torque Nm	Torque lb-ft (lb-in)
Cylinder Head Temperature Sensor - (CHT) - (Install new if removed)	13.5	$10 \mathrm{lb}-\mathrm{ft}$
Oil Cooler Lower Support Bracket	13.5	(120 lb-in)
Oil Drain Plug	20 Nm	$15 \mathrm{lb}-\mathrm{ft}$
Oil Filter - apply oil to filter O-ring	$8 \mathrm{Nm}(71 \mathrm{lb}-\mathrm{in})$ Approximately $3 / 4$ turn after sealing ring has contacted the engine case.	
Oil Filter Nipple (threaded fitting to crankcase)	61	45
Oil Line to Crankcase	10	(85 lb-in)
Oil Lines to Cooler	10	(85 lb-in)
Oil Pressure Relief Valves	6	$20 \mathrm{lb}-\mathrm{ft}$
Oil Pressure Sensor Loctite ${ }^{\text {TM }} 565$ or pipe sealant	14	(125 lb-in)
Oil Pump to Crankcase / Oil Tube to Crankcase	10	($85 \mathrm{lb}-\mathrm{in}$)
Oil Pump Sprocket	10	(85 lb-in)

OIL FLOW
DIAGRAM

4.4

LUBRICATION \& COOLING

OIL COOLER

ASSEMBLY VIEW - OIL COOLER AND LINES

OIL COOLER INSPECTION / CLEANING

1. Inspect cooler, lines, and all connections for leaks.
2. Inspect lines for proper routing. Replace if there is any sign of abrasion or damage.
3. Inspect cooler surface for obstructions or debris.
4. Rinse from engine side with low pressure water.
5. Inspect oil cooler fins for deformation. Fins can be straightened if not severely deformed and no oil leaks are present.
6. Inspect cooler mounting fastener for proper torque. Inspect mounting bracket and rubber grommets for cracks or damage (page 4.5).

OIL COOLER / OIL LINE REMOVAL

1. Place drain pan beneath oil lines.
2. Refer to Chapter 3 to remove the left highway bar, front chin fairing, left chin fairing, and left foot rest assembly.
3. Remove rear brake line clamps as required for oil line access.

Refer to Illustration on page 4.5.
NOTE: The upper oil cooler mount is secured to the top inner edge of the left chin fairing. Remove the nut (A).
4. Remove screw from P-clamp screw (B).
5. Remove screws (C) from lines at cooler.
6. Remove retainer plate screws (D) and plate.
7. Pull both lines straight outward to remove from crankcase.
8. Slide cooler off of grommets (E).

OIL COOLER / OIL LINE INSTALLATION

Refer to Illustration on page 4.5. Loosely install all parts, then tighten in order shown.

Oil Lines to Engine

1. Assemble support grommet (F) with print facing UP Install P-clamp over grommet. See P-clamp detail.
2. Install new flat washers on lines.
3. Lubricate new O -rings with engine oil and install against flat washers.
4. Clean oil line sealing surfaces on engine. Carefully align and assemble lines to engine.
5. Install retainer plate (G) with curved edges facing OUT. See detail view.
6. Install screws and torque to $9.6 \mathrm{Nm}(85 \mathrm{lb}-\mathrm{in})$.
7. If lines are not attached to cooler, install them before before installing P-clamp screw.
8. Tighten brake line clamp screws to 9.6 Nm (85 lb -in).

Oil Cooler Installation

If oil lines were removed from cooler and engine, install engine end first.

1. Lubricate cooler support grommets in bracket with mild soap and water solution.
2. Install cooler, engaging posts with grommets.
3. Install oil lines to cooler.

Oil Lines to Cooler

1. Install new backing washers on oil lines.
2. Lubricate new O-rings with engine oil and install on lines against backing washers.
3. Carefully align and assemble lines to cooler.
4. Install screws and torque to 9.6 Nm ($85 \mathrm{lb}-\mathrm{in}$).
5. Install left chin fairing and upper cooler mounting nut.
6. Install left foot rest and highway bar.

OIL PRESSURE INSPECTION LUBRICATION OIL PRESSURE

Use caution when working around hot engine oil. Review all WARNINGS on page 4.2.

1. Warm engine to operating temperature.
2. Stop engine.
3. Remove oil pressure sensor (A).
4. Install oil pressure gauge adapter.

Oil pressure gauge: PV-43531

5. Check engine oil using dipstick. Add recommended oil if necessary.
6. Start engine and check oil pressure at 3000 rpm .
7. If oil pressure is outside of specification, refer to the troubleshooting on page 4.2.
8. Once testing is completed clean threads with Loctite ${ }^{\text {Tu }}$ Primer N, apply sealant to threads in area indicated in Fig. 1 and install.

Oil Pressure Sensor

Item	Standard	Service Limit
Lubrication Oil Pressure @ 3000 rpm Measure at Oil Pressure Sensor @ $82^{\circ} \mathrm{C} / 180^{\circ} \mathrm{F}$	Standard $\pm 20 \%$ MINIMUM pressure is $276 \mathrm{kPa}(40 \mathrm{PSI})$	
Cooling Oil	OIL FLOW	-

OIL PUMP

OIL PUMP REMOVAL

1. Disassemble engine to access oil pump. (Refer to Chapters 6-10)

2. Remove oil filter and oil filter nipple (fitting) (A).

NOTE: The oil filter nipple MUST be removed to remove the long oil delivery tube. See photo above.
3. Remove retaining screw for short oil tube (B).

NOTE: The washers and/or O-rings for the oil piping may stay in the engine cases/oil pump body. Be sure to retrieve the used O-rings and washers and discard. Use new O-rings and washers during assembly.
4. Remove oil pump drive sprocket bolt and sprocket (C).
5. Remove (3) oil pump mounting bolts (D). The oil pump mounting bolts also hold the oil pump body together.

6. Remove long oil tube.
7. Remove oil pump and short oil tube together as a unit. Use caution not to drop any parts when removing oil pump from crankcase.

4.8

OIL PRESSURE RELIEF VALVES

The lubrication and cooling systems operate at different oil pressures, regulated by pressure relief valves. The valves are not interchangeable. Be sure to install each valve in the
proper location on the oil pump. The lubrication pressure relief valve screws into the main oil pump body, and has a SHORTER hexagonal portion. The cooling pressure relief valve screws into the oil pump base, and has a LONGER hexagonal portion.

1. Remove the relief valves. The lubrication relief valve (A) has a SHORTER hexagonal portion and screws into the pump BODY (B). The cooling pressure relief valve (C) has a longer hexagonal portion and screws into the pump BASE (D).
2. Visually inspect the relief valve for obstruction or unusual wear.

OIL PUMP INSPECTION

Inspect the oil pump when lubrication oil pressure is below specification. The oil pump contains 2 sets of inner and outer gerotors. Follow the inspection procedure for both sets of gerotors and both ends of the pump.

Keep gerotors together as a set, and keep them oriented the same way (dots on each gerotor must be on the same side upon assembly). Part not interchangeable.
If dots on the gerotors are not visible, mark the gerotors upon disassembly so they can be matched and oriented properly upon assembly.

Before disassembling pump completely, follow these inspection steps, and compare to specifications on page 4.3.

1. Remove the pump base (A) and lubrication side end cap (B).

2. Measure tip clearance as shown below for both cooling (larger gerotor set) and lubrication.

3. Measure clearance between pump body and outer gerotor on the lubrication side.

4. Measure clearance between pump body and outer gerotor on the cooling side.

5. Measure the oil pump end clearance with a feeler gauge at point "A". Lubrication side of pump is shown below. Cooling side is measured in the same manner.

OIL PUMP DISASSEMBLY

NOTE: Keep all parts together during disassembly. Note orientation of dots on gerotors for assembly. Gerotors must be assembled with the dots on the same side. They do not need to be aligned with each other.
6. Remove cooling outer gerotor.

7. Push on opposite end of shaft to allow pin to be removed from lubrication gerotor. Pull lubrication rotor back to expose pin and remove pin.

8. Push shaft back toward cooling end of pump and remove pin from cooling gerotor.
9. Pull shaft with inner rotor from pump body.
10. Clean all parts and inspect for wear.
11. Dry with compressed air

OIL PUMP ASSEMBLY
Refer to lllustration on page 4.11 for assembly view and torque values.

1. Press short dowel pins into lubrication side of pump body using an arbor press and a 6 mm allen head screw (A).

2. Press long dowel pins into cooling side of pump body using same method as above.
3. Secure pump body in a soft jaw vise. Apply Victory engine oil to threads of lubrication pressure relief valve and install into pump body. The lubrication relief valve has a shorter hexagonal portion than the cooling relief valve. torque to ($20 \mathrm{lb}-\mathrm{ft}$).

4. Assemble lubrication gerotor on pump shaft.

5. Lubricate shaft with moly assembly paste PN 2871460 .
6. Insert pump shaft/rotor assembly into pump body in direction shown (B).

7. Lubricate and install the cooling gerotor with pin slot (C) facing OUT.
8. Insert pin (D) into shaft on cooling side.
9. Push shaft inward while rotating to align pin and slot.

10. Install outer gerotor.

11. Push shaft toward lubrication side and hold in place. Install pin for lubrication rotor. Lubricate both gerotors with oil.

12. Secure pump base in a soft jaw vise. Apply Victory engine oil to threads of cooling pressure relief valve and install into pump base. The cooling relief valve has a longer hexagonal portion than the lubrication relief valve. Torque to 27 Nm ($20 \mathrm{lb}-\mathrm{ft}$).

13. Install oil jet to oil pump base.

Torque to 13 Nm ($115 \mathrm{lb}-\mathrm{in}$)

14. Lubricate pressure relief valve assemblies and both lubrication and cooling gerotors with engine oil.
15. Install base (A) and body cap (B) to pump.
16. Install a new oil inlet seal to inlet screen (C).
17. Pre-lubricate the entire oil pump and relief valves with Victory engine oil and assemble screen to oil pump body, aligning groove (D) in screen to tab on pump.

OIL PUMP INSTALLATION

1. Refer to Fig. 2. Clean oil pipes and dry with compressed air.
NOTE: After oil pump is installed, be sure the pump rotates freely by installing the sprocket without the chain and rotating pump a few revolutions.
2. Use new washers and O-rings upon assembly.
3. Install a backing washer (A) and lightly oiled O -ring (B) onto short oil pipe. Insert pipe into pump body with a twisting motion until seated.
4. Place washer (C) onto the other end of short oil pipe followed by a new lightly oiled O-ring (D).
5. Install oil pump and short pipe into left crankcase. Start by inserting oil pipe into rear of crankcase, then place oil pump into crankcase alignment holes.
6. Start the top two oil pump retaining bolts (E) and the rear pipe bolt (F) but do not tighten at this time.
7. Install new oiled O-rings (G) onto front of long oil pipe. Install new washer (H) on end of pipe and a new O-ring (I).
8. Fit front end of long oil pipe into position at front of crankcase and rear of pipe through oil filter nipple opening in crankcase. Install pipe retaining bolt (J).
9. Torque all pump fasteners to specification.
10. Install oil filter nipple (K). Center the oil pipe to the fitting with a $1 / 4$ inch pin punch as shown.
11. Temporarily install pump sprocket on pump shaft (without the chain) and turn oil pump over by hand.
NOTE: Turn pump shaft by hand a few revolutions to make sure it turns freely.

Fig. 2
12. Remove sprocket so chain can be installed.
13. Install chain over oil pump sprocket and balance shaft sprocket. Align pump sprocket to shaft and install retaining bolt (A). Torque to $9.6 \mathrm{Nm}(85 \mathrm{lb}-\mathrm{in})$.

NOTE: The sprocket is a floating design. A small amount of end play is normal after tightening the retaining bolt.
14. Refer to Chapter 10 for crankcase assembly.
15. Verify proper lubrication oil pressure after assembly. Refer to page 4.7.

NOTES
4.16

CHAPTER 5

FUEL SYSTEM / FUEL INJECTION

SAFETY PRECAUTIONS 5.3
FUEL SAFETY 5.3
SPECIFICATIONS 5.4
SPECIAL TOOLS 5.4
TROUBLESHOOTING 5.4
BASICS TROUBLESHOOTING 5.4
THROTTLE BODY FLOW SCREW AND 5.4
IDLE STOP SCREW 5.4
SERVICE PRECAUTIONS 5.5
FUEL SYSTEM ASSEMBLY VIEWS 5.6
FUEL TANK AND CAP MOUNTING 5.6
FUEL TANK ASSEMBLY VIEW 5.7
FUEL TANK VENT WATER DRAIN LINE ROUTING - 49 STATE 5.8
FUEL TANK EVAPORATIVE EMISSIONS SYSTEM - CALIFORNIA MODELS 5.9
FUEL PUMP / LEVEL SENSOR REFERENCE DATA 5.10
FUEL PUMP ASSEMBLY VIEWS 5.11
AIR INTAKE / BOX FRAME ASSEMBLY VIEW 5.12
IDLE AIR CONTROL ASSEMBLY VIEW 5.13
FUEL SYSTEM SERVICE
FUEL SYSTEM DEPRESSURIZATION / PRIMING THE FUEL SYSTEM 5.145.14
FUEL TANK VENT INSPECTION 5.14
FUEL TANK REMOVAL 5.15
FUEL TANK INSTALLATION 5.16
FUEL PUMP REMOVAL 5.18
FUEL FILTER REPLACEMENT 5.19
FUEL LEVEL SENSOR REMOVAL / INSTALLATION 5.20
FUEL PUMP INSTALLATION 5.21
FUEL PUMP CIRCUIT DIAGRAM 5.23
FUEL PUMP PRESSURE INSPECTION 5.24
FUEL LEVEL SENSOR RESISTANCE TEST / BYPASS TEST 5.25
FUEL PUMP ELECTRICAL DIAGNOSTICS 5.26
FUEL PUMP SUPPLY VOLTAGE TEST 5.26
BATTERY VOLTAGE TO FUEL PUMP 5.27
FUEL PUMP CURRENT DRAW TEST 5.28
IDLE AIR CONTROL REMOVAL 5.29
EFI SYSTEM COMPONENTS 5.30
FUEL INJECTION COMPONENT LOCATIONS 5.30
FUEL RAIL / FUEL INJECTOR REMOVAL / INSTALLATION 5.31
FUEL INJECTION SYSTEM TESTING AND DIAGNOSTICS 5.32
FUEL INJECTION SYSTEM AND IDLE AIR CONTROL OVERVIEW OF OPERATION 5.32
SELF-DIAGNOSTIC FEATURE 5.32
ECM CONNECTOR MAP 5.33
VIEWING AND CLEARING TROUBLE CODES 5.34
SENSOR DIAGNOSTICS 5.34
TROUBLE CODES 5.35
SPN / FMI ERROR CODES (CROSS COUNTRY) 5.36
ECM HARNESS CONNECTOR TEST PRECAUTIONS 5 .37
ECM CONNECTOR REMOVAL 5.37
ECM REMOVAL 5.37
EFI SENSOR CIRCUIT WIRING DIAGRAMS 5.38
EFI SENSOR CIRCUIT WIRING DIAGRAMS 5.39
SENSOR TESTS 5.40
THROTTLE POSITION SENSOR (TPS) DIAGNOSTICS 5.40
TEMPERATURE \& MANIFOLD ABSOLUTE PRESSURE SENSOR (TMAP) DIAG. 5.41
AIR TEMPERATURE SENSOR (ATS) DIAGNOSTICS 5.42
CYLINDER HEAD TEMPERATURE SENSOR (CHT) DIAGNOSTICS 5.43
IDLE AIR CONTROL (IAC) 5.44
VEHICLE SPEED SENSOR TEST 5.45
GEAR POSITION SWITCH TEST 5.45
MEMORY CHECK SUM ERROR 5.45
TIPOVER SENSOR 5.45
CRANKSHAFT POSITION SENSOR DIAGNOSTICS 5.46
BATTERY VOLTAGE AT ECM DIAGNOSTICS 5.46
DIGITAL WRENCH5.47
USING DIGITAL WRENCH DIAGNOSTIC SOFTWARE 5.47
TOOLS 5.47
DIAGNOSTIC SOFTWARE VERSION 5.47
TPS CALIBRATION NOT REQUIRED. 5.47
ECM REPLACEMENT 5.47
DIGITAL WRENCH FEATURES 5.48
GUIDED DIAGNOSTICS AVAILABLE 5.48
DIGITAL WRENCH COMMUNICATION ERRORS 5.48
DIGITAL WRENCH FEATURE MAP 5.49
DIGITAL WRENCH SCREEN EXAMPLES 5.50
DIGITAL WRENCH SCREEN EXAMPLES 5.51
DIGITAL WRENCH SCREEN EXAMPLES 5.52
REPROGRAMMING THE ENGINE CONTROL MODULE (ECM) 5.53
REPROGRAMMING TIPS 5.53
REPROGRAMMING PROCESS 5.55
TROUBLESHOOTING 5.57

SAFETY PRECAUTIONS

FUEL SAFETY

Many hazards are present when working on or around the fuel injection system. Read and pay close attention to the following warnings and cautions when working on any component in this section.

4. WARNING

Gasoline is extremely flammable and explosive under certain conditions.
Always stop the engine and refuel outdoors or in a well ventilated area.
Do not smoke or allow open flames or sparks in or near the area where refueling is performed or where gasoline is stored.
Do not overfill the tank. Do not fill the tank neck above the fuel tank insert. Leave air space to allow for fuel expansion.
If you get gasoline in your eyes or if you swallow gasoline, see your doctor immediately. Never try to syphon gasoline using mouth suction.
If you spill gasoline on your skin or clothing, immediately wash it off with soap and water and change clothing.
Never start the engine or let it run in an enclosed area. Engine exhaust fumes are poisonous and can cause loss of consciousness and death in a short time.

AWARNING
 Gasoline is extremely flammable and is explosive under certain conditions. Work in a well ventilated area. Open flames, sparks and cigarettes must be kept away from gasoline.
 KEEP GASOLINE OUT OF REACH OF CHILDREN!

AWARNING
 Careless handling of the control cables can result in twisting or bending of the cables. This can cause the cables to stick or bind, resulting in loss of vehicle control.

AWARNING

The engine and exhaust system become very hot during operation and remains hot for a period of time after the engine is shut off. Wear insulated protection for hands and arms or wait until the engine and exhaust system have cooled before performing service work.

AWARNING

The engine exhaust from this product contains chemicals known to cause cancer, birth defects or other reproductive harm.

AWMRNING
The engine and exhaust system become very hot during operation and remains hot for a period of time after the engine is shut off. Wear insulated protection for hands and arms or wait until the engine and exhaust system have cooled before performing service work.

DO NOT TAMPER WITH THROTTLE BODY FLOW SCREW

DO NOT TAMPER WITH IDLE STOP SCREW

SPECIFICATIONS
 FUEL SYSTEM SPECIFICATIONS

FUEL SYSTEM	
Item	Specifications
Fuel Octane (Minimum)	91 Octane ($\mathrm{R}+\mathrm{M} / 2$)
Fuel Pump Pressure	3.51 BAR (351 kPa) (51 psi)
Fuel Pump Volume (Approximate @ 12 V)	60 liters / hr $500 \mathrm{ml}(16.9 \mathrm{oz}) / 30 \mathrm{sec}$ $0.26 \mathrm{gal} / \mathrm{min}$ $0.26 \mathrm{gal} / \mathrm{min}$
Fuel Pump Current Draw	5A maximum
Fuel Level Sensor Resistance	50-250 Ohms $\pm 5 \%$
Idle Speed / Fast Idle Speed	Not Adjustable (Set by ECM and IAC valve) Spec Idle Speed is $950 \mathrm{rpm} \pm 100$
Injector Resistance	11.4-12.6 Ohms
Throttle Grip Free-Play	$2-4 \mathrm{~mm}$ (1/16"-5/32')

NOTE: Idle speed is continuously monitored and adjusted by the ECM via the IAC valve. DO NOT tamper with or attempt to "adjust" the idle stop screw or throttle plate flow screw! They are factory pre-set. If idle is erratic or if idle speed is incorrect, refer to troubleshooting in this section to find the cause of the problem.

SPECIAL TOOLS

FUEL SYSTEM SERVICE TOOLS

TOOL DESCRIPTION	SPX PART NUMBER
Diagnostic Tool Kit - with Digital Wrench Software PU-47052-C (and license serial number), Standard Interface Cable PU- 47151, and Victory Adapter PV-46085-2)	PV-46085
SmartLink Interface Kit* "Kit Includes: CAN Interface Cable (PU-47469) Serial Interface Cable (PU-47470)	PU-47471
Fuel Pressure Gauge	PU-43506-A
Fuel Pressure Gauge Adapter	PV-48656
Fluke 77 Digital Multi Meter	PV-43568
Electrical Connector Test Adapter Kit	PV-43526
Relay Jumper (to run fuel pump)	PU-49466
Laptop Computer	-

TROUBLESHOOTING

BASICS TROUBLESHOOTING

NOTE: The closed-loop EFI system does not require TPS calibration. Refer to Fuel System Troubleshooting page 5.57-5.60.
DO NOT OVERLOOK THE BASICS WHEN TROUBLESHOOTING:

1. Battery in a low state of charge can cause problems. Be sure the battery is in good condition and fully charged.
2. Air leaks in intake tract / air box - check for air leaks and repair to avoid mis-diagnosing the EFI system.
3. Contaminated or improper fuel.
4. Restricted fuel flow / filters (low fuel pressure).
5. Fuel tank vent line pinched or obstructed.
6. Faulty spark plug(s).
7. Corroded, disconnected, or mis-connected wiring. Pay close attention to wires at the back of connectors and at the fuse box to be sure they are secured in their slots and not loose.
8. Poor electrical ground connections.
9. Exhaust system restriction, improper exhaust, air leaks at joints or head pipe flange.
10. Engine mechanical condition.

THROTTLE BODY FLOW SCREW AND IDLE STOP SCREW

DO NOT TAMPER WITH THESE SCREWS!

Throttle body flow and idle stop screws are factory preset. Throttle body must be replaced if screw setting is changed.

SERVICE PRECAUTIONS

EFI SYSTEM PRECAUTIONS

NOTICE: While electronic fuel injection is very durable and reliable, the components can be easily damaged or problems can be introduced if the following precautions are not observed.

It is not advisable to "jump start" the machine with another battery. Although problems are unlikely to occur if everything is done carefully, the possibility of permanent damage to expensive electrical component exists.
Never disconnect the battery while the engine is running.
Pay special attention when connecting and disconnecting the battery cables. Refer to Chapter 16 for complete battery connection and charging information.
Before disconnecting or connecting electrical connections, be sure the key switch is off. An even better practice is to disconnect the battery when disconnecting or connecting electrical connections.
Fuses and circuit breakers protect critical electrical components and circuits. Investigate the cause, repair the problem, then replace the fuse. Never replace the fuse with a larger value fuse or "jumper" the fuse with wire, aluminum foil or any other means.

The ECM is a sensitive piece of electronic equipment. Dropping it or hitting it may cause irreparable damage. This is also true for sensors used in the system.

Do not drop or strike F.I. components

Static electricity can damage the ECM beyond repair. The human body can easily store enough static electricity to damage sensitive electronic components. Before working with any components of the Fuel Injection system, ground yourself to dissipate any static charge. Also take care not to touch any of terminal pins on the ECM.

Do not touch ECM connector pins

Anti-static Wrist Strap PV-43541

NOTICE: Some tests require probing of the ECM wiring harness connector. Do not touch or probe the exposed pins on the ECM. Static electricity from your body or the meter can easily damage the ECM.
Always use the proper adapter from the Connector Test Adapter Kit when probing the terminals. Many of the connectors are sealed and cannot be back probed. Be extremely careful not damage the connectors by forcing meter probes into the connectors.

Use proper test adapters on connector pins

Connector Test Adapter Kit PV-43536

Poor connections are the most common cause of EFI malfunctions. Inspect wires at connectors and at the fuse box during troubleshooting. Be sure they are secured in their slots and pushed out or loose.

Wire terminals must be corrosion free and fully seated. Connectors should snap together and lock.

FUEL SYSTEM ASSEMBLY VIEWS

FUEL TANK AND CAP MOUNTING

5.6

FUEL TANK ASSEMBLY VIEW

FUEL TANK VENT WATER DRAIN LINE ROUTING - 49 STATE

5.8

FUEL TANK EVAPORATIVE EMISSIONS SYSTEM - CALIFORNIA MODELS

FUEL PUMP / LEVEL SENSOR REFERENCE DATA

Fuel Level Sensor Test - page 5.25
Fuel Pump Test - page 5.26
Fuel Pressure Test - page 5.24
Fuel Pump Installation - IMPORTANT! Improper installation of pump can result in fuel starvation at low fuel levels.
Refer to procedure on page 5.21 .

5.10

FUEL PUMP ASSEMBLY VIEWS

\longrightarrow

AIR INTAKE / BOX FRAME ASSEMBLY VIEW

5.12

IDLE AIR CONTROL ASSEMBLY VIEW

FUEL SYSTEM SERVICE
 FUEL SYSTEM DEPRESSURIZATION

A warning

Allow engine and exhaust to cool completely before disconnecting fuel line or removing tank. Wear eye protection.

1. Remove IAC cover.
2. Wrap a clean shop towel around fuel line fitting.
3. Squeeze both release buttons (one on each side of fitting) and hold; carefully slide fitting from fuel rail.
4. Cover fuel fittings to keep debris out of line.

PRIMING THE FUEL SYSTEM

Fuel pump prime procedure also serves to center the IAC valve. The fuel level in tank must be high enough to submerge the fuel pickup in the tank. A prime procedure should be performed:

- If a new fuel pump is installed or if tanks are run completely dry.
- Whenever fuel system is serviced (fuel line is disconnected).
- Whenever battery or IAC is disconnected.

1. Fill the fuel tank.
2. Turn Engine Stop switch OFF
3. Turn ignition key ON .
4. Turn stop switch to RUN.
5. Allow switch to remain in RUN position until pump stops running (about 2-3 seconds).
6. Turn stop switch OFF.
7. WAIT until the ECM centers the IAC valve (the clicking sound stops) and then wait an additional 10 seconds. or until you hear a faint single "click" from the relay.
8. Repeat Steps 4-7 about 5 times to complete the priming procedure. Turn ignition key OFF when priming is complete.

FUEL TANK VENT INSPECTION - 49 State

1. Disconnect vent hose (A) under seat.
2. Be sure hose is unobstructed to tank fitting and to drain line (B) to atmosphere.

FUEL TANK VENT INSPECTION - California

1. Disconnect vent hose (C) under seat.
2. Be sure both hoses (C, to tank) and (D, to EVAP canister) are unobstructed.

FUEL TANK REMOVAL

Review gasoline warnings on page 5.3. Allow engine
and exhaust to cool completely before disconnecting
fuels line or removing tank.

NOTE: The fuel line is secured to the main wiring harness by a tie strap. The fuel line must be disconnected from the fuel pump fitting (A) before removing the tank.

1. Remove side covers and seat (Chapter 3).
2. Disconnect vent line (B) and water drain lines (C).

3. Remove ground wire bolt (D) and rear tank bolts (E) and collect flange bushings (F) and isolators (G).

4. Secure handlebars in the straight ahead position. Place a protective cloth on front of tank to prevent damage.
5. Lift rear of tank a few inches and support.
6. Reach under tank and locate pump harness connector. Carefully lift tab (H) and disconnect harness.

7. Disconnect fuel line from pump by squeezing release tabs (I) on both sides of the fitting. Pull fuel line straight down off pump fitting.

8. Grasp tank at front edge. Lift rear of tank high enough for fitting on fuel pump to clear the frame.
9. Carefully pull tank rearward to release front tank mounts from front isolators.

FUEL TANK INSTALLATION

1. Route fuel line over clutch cable (A), between wire harness and frame (B) to fuel rail. Pump wire hamess is routed inside the rear bend of fuel line (C). Fitting (D) should be centered in frame opening.

2. Install fitting at fuel rail end by pushing straight inward until line fitting clicks securely in place. Pull lightly to be sure the line is secured to the fitting.
3. Place a tie strap loosely around the wire harness and fuel line in location (E).
4. Rotate rail end fitting until 6 mm ($1 / 4$ inch) clearance exists between fuel line and throttle reel at (F). Hold line in place and pull tie strap (E) firmly to prevent fuel line rotation.

5. Position front wheel straight ahead.
6. Assemble vent and drain lines to tank (if removed).

7. Assemble front isolators to frame. Apply alcohol, soapy water solution, or rubber lubricant to ease tank installation.
8. Slide tank onto front isolators and fully forward. Support rear of tank.
9. Connect fuel line to fuel pump. Push fitting straight onto pump fitting until it clicks in place. Pull lightly to be sure fitting is fully installed.
10. Connect fuel pump wire harness.
11. Verify fuel line is routed and secured properly before lowering tank.

12. Install rear isolators (flange side to tank) and flange bushings.
13. Lower rear of tank and install bolts.
14. Torque fasteners to specification.

15. Connect vent. drain. and ground wire.
16. Install seat and side covers.

FUEL PUMP REMOVAL

WARNING
Replace all mounting screws and pump seal O-ring any time pump is removed for service or fuel filter maintenance. Review gasoline warnings on page 5.3. Do not kink or bend fuel pickup hose upon removal.

NOTICE

Be careful when removing and installing the fuel pump to avoid damage to pump, wiring, or hoses. Follow pump removal and installation procedure. Inspect wires and hoses for damage after removing pump. Be sure pickup filter is positioned properly (between the baffle plates at rear of tank) to prevent fuel starvation at low fuel levels.

1. Drain fuel from fuel tank using a vacuum or siphon pump designed for fuel systems. The level fuel sensor float arm is located in the left side of the fuel tank. Careless use of a pump or siphon hose could damage the float arm or sensor.
2. Remove fuel tank (page 5.15).
3. Place a clean, soft protective cloth on a work bench or flat surface.
4. Lay tank on cloth with pump facing UP. Be prepared to contain any fuel spillage as a small amount of fuel will remain in the tank.
5. Loosen all mounting screws evenly in a cross pattern until all are loose. Remove all screws and discard.
6. Remove vent line and drain line.
7. Lift FRONT EDGE of pump upward until resistance is felt.
8. Push hose at front edge of pump away from edge of tank opening (Area $A^{\prime \prime}$ below) to gain more clearance for pump removal.

9. Lift front of pump upward until wires and hose are clear of pump opening. Push tab (B) of fuel level sensor connector in and slide apart to separate connector.

10. Carefully remove pump, being careful not to bend or kink the fuel pickup hose.
11. Inspect wires and hoses for damage.

FUEL FILTER REPLACEMENT

NOTE: Careless removal of fuel pump pickup filter can damage the pump. Use care and work carefully, following all instructions.

Filter Removal

1. Remove fuel pump (page 5.18).
2. Using a scribe or a similar pointed tool, carefully pry open tabs (A) of push-nut to loosen it on the alignment post. Do not remove push-nut before opening the tabs or post may be damaged.

3. Remove push-nut. Use care not to damage or break alignment post.

4. Push retainer tab (B) and hold. Use a small flat screw driver to gently pry connector plate off inlet fitting of pump (C). Pry as close to fitting as possible.

Filter Installation

1. Push new filter straight onto inlet fitting while guiding retainer tab (D) under fuel pump mounting ring. Apply firm pressure to be sure the filter is seated completely against the pump before installing push-nut.

2. Install new push-nut from filter kit onto alignment post with a small socket (E). Be sure nut is seated firmly against the filter plate.

FUEL LEVEL SENSOR REMOVAL

1. Remove fuel pump (page 5.18).
2. The sensor assembly is mounted on a bracket on the left side of the fuel tank and retained by a tab on the center bar of the fuel sensor body. Below is a cutaway view showing the sensor mounted to the bracket with the tank upright in a normal position.

CUTAWAY VIEW OF SENSOR

3. With tank inverted as shown, use a machinist's scribe with a small hook or a small screwdriver to carefully pry the center of the bar outward until lock tab is released.
4. Push sensor off mounting bracket and remove it from the tank.

FUEL LEVEL SENSOR INSTALLATION

1. Orient sensor as shown and place in tank opening.

2. Slide sensor onto bracket and push until tab engages bracket. Pull downward lightly on sensor to be sure sensor tab is locked into bracket.

3. Install fuel pump (page 5.21).

FUEL PUMP INSTALLATION

1. Install a NEW O-ring on pump mounting flange, pressing it firmly into groove of pump flange. Be sure O-ring is not twisted.
2. Check position of wires. Wires should not protrude past curve of hose (hose should be outermost). If necessary, adjust wires so they route inside of hose as shown (A) to prevent WRE damage when installing pump.

3. Clean sealing surface of tank (B) and inspect closely for scratches or surface damage that would prevent the O-ring from sealing properly.
4. Install pickup end of pump first, guiding filter between baffle plates located at the back of the tank.

5. Below is a cutaway fuel tank shown to illustrate filter placement described in Step 4. The two views show the correct and incorrect pump installation.

CUTAWAY VIEWS

VIEWS ARE FROM FUEL CAP AREA LOOKING TOWARD REAR OF TANK ON TOP SIDE
$\sqrt{\text { CORRECT - Filter is between baffle plates. }}$

6. Connect fuel level sensor harness (C).

Fuel Pump Installation (Cont.)

7. Set rear edge of pump flange on mounting surface.
8. Before final pump installation, use light to look at the baffle area of the tank (D) as shown. If the filter is visible it is caught on the tank baffle (see photo previous page). Slide pump forward slightly and move filter toward center of tank (between the plates) or remove pump and reinstall properly.

9. If filter is NOT visible, proceed with installation Step 10.

10. Push level sensor wires into tank and clear of hose.

5.22
11. Add fuel. Check for leaks at flange area before installing fuel tank (page 5.16).

FUEL PUMP CIRCUIT DIAGRAM

FUEL PUMP PRESSURE INSPECTION

A WARNING
Gasoline is extremely flammable and is explosive under certain conditions. Work in a well ventilated area. Open flames, sparks and cigarettes must be kept away from gasoline. KEEP GASOLINE OUT OF THE REACH OF CHILDREN!

A. CAUTION

Wear safety glasses or a face shield when working around the fuel system to protect your eyes.

1. Disconnect fuel line at fuel rail (page 5.14).
2. Attach Fuel Pressure Gauge Adaptor PV-48656 to fuel line and to fuel rail.
3. Screw Fuel Pressure Gauge PU-43506-A to fitting on adaptor.
4. Start engine and record fuel pressure (or cycle key and Engine Stop switch to read pressure when pump cycles for $2-3$ seconds).
5. Turn ignition switch off.
6. Open bleed valve to de-pressurize gauge and drain residual fuel.
7. Disconnect adapter. Re-connect fuel line to rail, pushing straight inward until quick connect fitting "clicks" securely in place. Pull lightly to ensure fuel line is secured.

FUEL PRESSURE TROUBLESHOOTING	
FUEL PRESSURE TOO LOW: INSPECT	FUEL PRESSURE TOO HIGH: INSPECT
* Low fuel level (add fuel)	- Plugged fuel return (in tank on pressure regulator)
- Pump not running (Fuel pump or circuit malfunction)	- Pressure regulator malfunction (located on pump).
* Restricted fitting, fuel supply line, or gauge adapter hose	
- Fuel line kinked or restricted (from tank fitting to rail)	
- Fuel line leaking (leaking air in or fuel out)	
- Vent restriction	
- Plugged fuel pickup filter (located in fuel tank)	
- Pressure regulator malfunction (located on pump)	
- Fuel pump malfunction (Pump should run for about 2	
seconds the instant that the key switch and Engine Stop	
switch are turned ON.	

FUEL LEVEL SENSOR RESISTANCE TEST

OVERVIEW OF OPERATION: The fuel level sensor is a mechanical float arm located inside the fuel tank. Circuit resistance determines the reading on the fuel level gauge (Cross Country) or on the fuel level bar display on the speedometer (Cross Roads). When the fuel level indicated on the fuel gauge is below $1 / 4$ tank, a LOW FUEL warning icon lights up on the information display (Cross Country).

Follow the steps below to test the sensor circuit with an ohmmeter.

1. Remove side covers and seat (Chapter 3).
2. Disconnect vent and water drain hoses at rear of tank.
3. Remove rear tank mounting bolts.
4. Lift and support rear of fuel tank high enough to access fuel level sensor / fuel pump connector.
5. Disconnect the harness.
6. Set multimeter to measure resistance.
7. Attach meter leads to pin A and pin B of 4 -pin connector out of the fuel pump. Estimate the fuel level in the tank and compare resistance reading to the table below.

Resistance Measured From Pin A to Pin B in 4-Pin Connector	Approximate Resistance
	FULL (Sensor Arm Up)
Sensor Resistance	
(Room Temperature)	$50 \Omega+/-3 \Omega$

FUEL LEVEL SENSOR BYPASS TEST

1. If fuel gauge is inoperative but level sensor resistance is correct, perform the following test when the connector is still unplugged.
2. Connect a 50 Ohm (minimum) resistor across Pin A and Pin B on the hamess side of the fuel pump connector (connect Black/Dark Green wire to Black wire).
3. Tum ignition key ON and engine stop switch to RUN.
4.
5. The fuel gauge should indicate between FULL and empty depending on the resistor value used for testing.
NOTE: At least 50 Ohms should be installed in series with Pins A and B. Connecting Pin B directly to Pin A or to chassis ground will set an error code.
6. If gauge does not function, check continuity of Black wire ($\operatorname{Pin} A$) to ground. Resistance should be less than. 5 Ohms. If ground is OK, check all pin connections in the fuel pump connector and the gauge connector (in headlamp or fairing) and verify good continuity of BKIDG wire to the gauge connector.

ERROR MESSAGE (Cross Roads)

If the fuel level sensor is disconnected, an error message will be displayed on the speedometer information screen.

Message	Screen	Indicates
ERROR	Fuel Level	Fuel sensor disconnected / shorted

\qquad

FUEL PUMP ELECTRICAL DIAGNOSTICS

FUEL SYSTEM	
Fuel Pump Pressure	$3.51 \mathrm{BAR}(351 \mathrm{kPa})(51 \mathrm{psi})$
Fuel Pump Volume (@ 12VDC)	60 liters/hr ($500 \mathrm{ml} / 30$ seconds) $(16.9 \mathrm{oz} . / 30 \mathrm{~seconds})(0.26 \mathrm{gal} / \mathrm{min})$
Fuel Pump Current Draw	5 amps maximum @ 13.5 VDC

NOTE: When ignition switch is turned ON and Engine Stop switch is in the RUN position, fuel pump will run momentarily (about 2-3 seconds). Key or Engine Stop switch must be turned OFF for at least 5 seconds before fuel pump will cycle again (there may be an audible click as the relay re-sets). Fuel pump will not cycle again if switch is turned on and off quickly. NOTE: If the ECM reprogramming procedure was interrupted or failed due to low battery voltage, the ECM could have lost critical startup information. If you notice the fuel pump does not run with key / stop switch cycle immediately after reprogramming the ECM, connect a battery charger and re-program the ECM with a stock fuel map and start over.

FUEL PUMP SUPPLY VOLTAGE TEST

1. Disconnect fuel pump / level sensor harness (as described on page 5.25 for level sensor test).

2. Connect red lead of a DC volt meter to Pin D on the wire harness side of the connector. Connect black lead to chassis ground (or to Pin C of connector).
3. Turn Engine Stop switch to RUN.
4. Turn ignition key ON and read DC voltage on meter when key is first turned on. Voltage reading on pin D (Violet/Yellow) should be close to battery voltage for 2 3 seconds after turning key ON.
5. If low or no voltage is delivered to the fuel pump, verify ground wire (Pin C, Black) has good continuity to chassis ground and back to battery negative (-) post.

6. If ground is OK, check Gray wire from fuel pump relay to Pin 5 of the Engine-Chassis hamess connector, and from there to ECM pin \#28. The Gray wire receives a momentary ground from the ECM (for $2-3$ seconds) and activates the fuel pump relay which supplies power to the pump on the VT/YE wire.
Trace both power and ground circuits to determine fault if battery voltage is not present for 2-3 seconds after key and kill switch are turned on.

When a CPS signal is received by the ECM (engine is cranking or running) the ECM maintains the ground on Pin 28 (Gray wire), keeping the pump powered.

BATTERY VOLTAGE TO FUEL PUMP

NOTICE
The following procedure powers the fuel pump circuit directly. Read and understand the entire procedure before you begin.

1. Check fuel pump fuse (A, below). If open (blown) visually inspect circuit wiring for shorts to ground and then perform fuel pump current draw test on page 5.28 .
2. If fuse is OK, remove fuel pump relay (B).

3. Use a test light or a DC voltmeter to verify battery voltage is present on Violet/Black (VT/BK) wire on relay terminal A4. NOTE: Battery voltage should be present regardless of key switch position.

Top View - Fuse Box Terminals
(Fuses and relays removed)

4. If power is present, insert PU-49466 Relay Jumper into relay socket (the tool is non directional and can be installed either way). If PU-49466 is not available, an ammeter can also be used as in Current Draw Test (page 5.28).

NOTICE

A jumper wire can also be used to connect terminal A4 and B5 to run the pump, however, be careful not to apply power to the Gray wire terminal B4, or ECM damage will occur.

Do not power a dry fuel pump or pump damage could result from overheating. Pump must be in tank, submerged in fuel, and connected to fuel rail.
5. If pump runs when powered directly in Step 4, swap fuel pump relay with accessory relay, turn ignition key ON and engine stop switch to RUN. If pump runs when key/stop switch is cycled, replace faulty relay.
6. If pump does not run with relay swapped and Key/Stop switch cycled (but ran in Step 4 with the jumper installed) check for battery voltage on Red/Black wire (RD/BK) terminal A5 of pump relay socket. NOTE: The key must be ON and the engine stop switch set to RUN.
7. If there is no battery voltage on terminal A5 (with ignition key ON and Engine Stop switch to RUN) refer to the wiring schematic to trace power path through ignition switch and Engine Stop switch.
NOTE: If starter motor circuit works, key and kill switch are not suspect. Check continuity of RD/BK wire from kill switch (Pin 2) to pump relay.
8. If battery voltage is present on terminal A5, turn key and stop switch OFF.
9. Check continuity of gray wire from pump relay (terminal B4) through engine harness connector (Pin 5) to ECM Pin 28. The ECM grounds the pump relay through pin 28 for 2-3 seconds when key and engine stop switch are first turned ON. The ECM maintains the ground connection after engine start-up (after a CPS signal is present). Ground the Gray wire to bypass the ECM ground for testing (Key and stop switch ON).

FUEL PUMP CURRENT DRAW TEST

OVERVIEW: Fuel pump current draw is an indicator of pump condition. Perform draw test if fuel pump operation is suspect, or if fuel pump fuse is found open (blown).
NOTE: When meter leads are inserted the pump will run, and current draw will be displayed on the meter, even with key and stop switch off. Fuel tank must be completely installed and have enough fuel in it to cover the fuel pickup filter for an accurate test.

NOTE: Be sure fuse of your ammeter is not open (blown). To check ammeter fuse, place leads in the normal + and - jacks and turn selector to Ω (resistance) position. Place free end of red (+) meter lead into 10 Amp socket as shown below. Meter should read approximately . 2 Ohms. A reading of OL indicates an open fuse.

Checking Ammeter Fuse

1. Remove right side cover. Lift tab at top of fuse box base and slide fuse box up to remove it from bracket. Remove cover.
2. Remove fuel pump relay (A) by pulling straight upward.

3. Set meter to DC Amps. Be sure red meter lead is in the 10A jack, and black meter lead is in common (-) jack.
4. Insert red meter lead in terminal A4 and black meter lead in terminal B5 of relay socket. NOTE: The fuel pump will run regardless of key / stop switch position.

5. Read fuel pump current draw on meter and compare to specification.

6. Inspect fuel pump circuit wiring if pump does not run.
7. Replace fuel pump if current draw exceeds specification.

SPECIFICATION: Fuel Pump Current Draw
 Maximum: 5 DC Amps

5.28

IDLE AIR CONTROL REMOVAL

Also refer to IAC Assembly View on page 5.13.

1. Remove RH cover and IAC cover.
2. Remove wire dart (A).
3. Push tab (B) to disconnect IAC harness.
4. Remove (4) IAC bracket screws (C) using a 5 mm ball drive hexagonal socket.

5. Remove high tension leads from coils.

NOTE: The front HTL is routed behind the ignition switch cover, not above it upon assembly.

6. Remove (4) bracket screws with a 5 mm ball drive hexagonal socket.
7. Lift tab of primary wire harness connector to detach it from the ignition coil.

8. Push tab on ignition switch connector and remove bracket with switch attached.
9. Remove air supply hose from air box, the front air delivery hose, and the rear air hose with "T" fitting from throttle body.

NOTE: Restricted side of tee fitting faces purge valve on California models. On 49 state models, the restricted side of the tee fitting is plugged (E).

$\longrightarrow 5$

EFI SYSTEM COMPONENTS

FUEL INJECTION COMPONENT LOCATIONS

FUEL RAIL / FUEL INJECTOR REMOVAL

1. Remove fuel tank (page 5.15).
2. Remove ignition coil with bracket and IAC bracket assembly with hoses (page 5.29).
3. Remove fuel rail screws (A) and four intake manifold screws (B).

4. Remove throttle cables from throttle body bracket.
5. Push throttle body and air box seal up into frame to provide as much clearance as possible for injector removal.
6. Cut tie strap that secures injector wire harness to fuel rail. Slide red lock tab from each injector harness connector.

7. Press tab to remove harness from each injector.
8. Slide fuel rail retaining clip back until rail is released from injector, or remove them completely.
9. Lift fuel rail off injectors and remove rail from right side.
10. Cover exposed ends of injectors and fuel rail with plastic wrap to prevent contamination.
11. Clean area around injectors with compressed air to prevent foreign material from entering engine. Pull injectors out of cylinder heads; keep in order (front and rear) for assembly.

FUEL RAIL INSTALLATION

1. Lubricate O-rings with engine oil. Install front injector with wire harness connector facing forward.
2. Install rear injector with wire harness connector facing rearward.
3. Press firmly to seat injector and remove protective cover.
4. Install retainer clips fully onto each injector. Be sure clips are fully seated in the groove.

5. Install fuel rail and place in position on top of injectors. Press rail over each injectors evenly until retaining clips "click" into place on the rail. Be sure rail is seated completely and clips are engaged in the groove.

6. Install fuel rail retaining screws and torque to 85 in . lbs. (10 Nm).
7. Install wire harness on each injector and then install the red locking tabs.
8. Secure wires to fuel rail with new tie straps.
9. Assemble remaining parts in reverse order and prime the fuel system (page 5.14).

FUEL INJECTION SYSTEM TESTING AND DIAGNOSTICS

FUEL INJECTION SYSTEM - OVERVIEW OF OPERATION

The Electronic Fuel Injection (EFI) system functions to provide the engine with precisely metered fuel under varying loads and conditions.

The Engine Control Module or "ECM", is located under the seat. It is programmed to provide the proper fuel and ignition timing based mainly on primary inputs of engine RPM and the Temperature and Manifold Absolute Pressure (TMAP) sensor inputs. The ECM evaluates other minor sensory information received from various sensors in the EFI system, and also provides grounds or voltage to other EFI related circuits of the electrical and fuel delivery systems.

A Throttle Position Sensor (TPS) is mounted on the left side of the throttle body. The TPS is not a primary input for air flow information in the closed loop system. It mainly provides "rate of change" feedback to the ECM (such as rapid acceleration) and also serves as a plausibility check for the TMAP sensor. The MAP portion of the TMAP sensor is the primary air flow and load sensing device.

An electric fuel pump, mounted inside the fuel tank supplies fuel pressure to the injectors continuously when the engine is running or cranking. A pressure regulator incorporated on the pump keeps fuel pressure steady at approximately 50 PSI (3.44 Bar). The fuel pump cycles "ON" for 2-3 seconds when the ignition key and Engine Stop switch are turned on to pressurize the system for start-up.

The fuel injectors inject fuel when they are grounded by drivers inside the ECM. The duration of the injector pulse (length of time the injector circuit is grounded) is controlled by the ECM. Pulse duration determines the amount of fuel delivered to the engine (longer cycles $=$ more fuel). The ECM selects the correct amount of fuel injector cycle time by referencing a three dimensional fuel "map". Simplified, each reference point on the map represents a different amount of time.

Although TMAP and engine RPM are the most influential inputs for selecting a map reference point, the ECM also evaluates feedback from minor sensors in the system, to obtain a more accurate "picture" of the fuel needs at any given moment.

The locations of sensors and other EFI system related components is shown on page 5.30.

IDLE AIR CONTROL (IAC) - OVERVIEW OF OPERATION

The Idle Air Control system consists of the Engine Control Module (ECM), IAC valve, air supply hose, two air delivery hoses, and related wiring between ECM and IAC valve. (See IAC Assembly View on page 5.13).
The IAC valve is located behind the cover on the right side of the throttle body. Its main function is to stabilize the engine's base idle speed by varying the amount of air allowed to the engine at idle and low throttle openings. Air is regulated by valves located inside the IAC valve body. The ECM continuously monitors engine RPM and changes the position of IAC air valves (via step motors) to maintain idle speed between 850 and 1050 RPM.
Filtered air from the air box is delivered to the IAC valve body through a supply hose on the lower left side of the air box, then distributed to front and rear cylinder throttle bodies through separate delivery hoses.
IAC CYCLING - Whenever the IAC wire harness is disconnected, or after ECM re-programming, cycle the key switch on and off so the IAC valve can "learn" its position. Wait 5 seconds after turning the key ON. The system requires no scheduled maintenance beyond visual inspection of all hoses and electrical connections. NEVER attempt to "adjust" idle speed with the throttle stop screw or flow balance screw (on RH end of throttle body). These screws are factory pre-set. Any tampering will require throttle body replacement. If IAC cannot stabilize the idle, look for air leaks, air restrictions, or poor electrical connections. View the Closed Loop Correction Factor data item in Digital Wrench (normal is .92-1.07). Higher numbers could indicate an IAC or inlet manifold leak.

SELF-DIAGNOSTIC FEATURE

The ECM used on the Victory motorcycle stores trouble codes in memory. Trouble codes are stored by the ECM when a sensor reading is outside of the normal or "plausible" range. Codes are listed and described on page 5.35. The ECM is located under the left side cover. When a fault occurs, the ECM records a code in the "Logged Faults" memory. If a fault is currently active, the code is also recorded in the ECM "Current Faults" memory and remains until the fault is no longer occurring. If a problem is corrected, a "Current Fault" is erased, but the code remains in "Logged Faults" memory until it is manually cleared using Digital Wrench. Logged faults remain even if battery power is removed from the ECM.
Digital Wrench diagnostic software is the tool used to interface with the EFI system by coupling to a diagnostic port located under the left side cover. Whenever available, Digital Wrench should always be connected to a vehicle for more accurate problem diagnosis.

ECM CONNECTOR MAP

Refer to page 5.37 to remove connector from ECM.

FUEL SYSTEM RELATED ECM CONNECTOR MAP
(System related wire color \& pin number shown. Refer to wiring diagram for complete connector diagram). Some open pin connector positions are included for clarity.

1	3	6	7	8	9	16	19	23	24	25	26	27	28		
vipk	$\left\|\begin{array}{c} \text { war } 6 x \\ \text { nion } \\ \cos \text { PNO } \end{array}\right\|$	$\begin{aligned} & \text { De/RK } \\ & \text { WC } \\ & \text { STEPGR } \\ & \text { WOTOR } \end{aligned}$	$\begin{aligned} & \text { DeIVEH } \\ & \text { WC } \\ & \text { STPER } \end{aligned}$	$\begin{aligned} & \text { Delco } \\ & \text { WC } \\ & \text { STEFER } \\ & \text { wotch } \end{aligned}$	De/RO UC STEPER WOTOR 4	CPEN	\|c	c	$\begin{gathered}\text { De } \\ \text { cwast } \\ \text { Puge } \\ \text { VNVVE }\end{gathered}$		OREN	$\begin{aligned} & \text { WHIDE } \\ & \text { OEECTOR } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Wellar } \\ \hline \text { wotcton } \\ 2 \end{array}$	OPCN	

$\mathrm{BN}=$ Brown; $\mathrm{DG}=$ Dark Green; $\mathrm{BK}=$ Black; $\quad \mathrm{GY}=\mathrm{Gray} ; \quad \mathrm{PK}=$ Pink; $\mathrm{RD}=$ Red; $\mathrm{VT}=$ Violet; $\quad \mathrm{WH}=$ White; $\mathrm{YE}=$ Yellow; $O G=$ Orange; $D B=$ Dark Blue

31	33	36	37	38	39	40		46	49		53	54	55	56	57	58	
VTBE vover	Ex/Wer ECS GROUN	GY/RD 21 OPONT) 02 sONSOR	$\begin{aligned} & \text { GYIDE } \\ & \text { si RENO } \\ & \text { O2 } \\ & \text { SENSOR } \end{aligned}$	$00 / D 0$ INTMKL AN TEMP	$\begin{aligned} & 0 G / D 0 \\ & \text { CYMOUR } \\ & \text { IEND } \\ & \text { TBMP } \end{aligned}$	$\begin{aligned} & \text { OOIVA } \\ & \text { nPOVER } \\ & \text { SENSOR } \end{aligned}$		geride monk RETVPN	CPEN		00/YE TPS	$\begin{aligned} & 00 / \mathrm{NiN} \\ & \mathrm{MNP} \end{aligned}$	GN/RO -5 MEFERENCE VOCTS	OPEN	$\begin{gathered} R D \\ C P S \\ \hline \end{gathered}$	cix	

VERIFY TERMINAL PINS ARE NOT LOOSE IN CONNECTOR AND WIRE CONNECTION TO TERMINAL PIN IS SECURE.

CHASSIS TO ENGINE HARNESS CONNECTOR (14 PIN)
Some sensor tests refer to the Engine Harness Connector (A) located behind the left side cover.

Read ECM CONNECTOR REMOVAL procedure on page 5.36 before attempting to remove the ECM connector.

VIEWING AND CLEARING TROUBLE CODES

Trouble codes are logged in the ECM memory when a sensor or other supported system fault occurs. To view the codes, do the following:

Viewing Trouble Codes

1. Connect the Digital Wrench diagnostic software and establish communication with the ECM.
2. Select the 1 icon to display loaded trouble code(s).
3. The codes are classified as Current or Historical. Current codes are occurring at the moment. Historical codes are not occurring at the moment but have occurred in the past. A list of codes is on page 5.35 .

Clearing Trouble Codes

1. Click on the "Clear Trouble Codes" icon to clear trouble codes.

SENSOR DIAGNOSTICS - IMPORTANT INFORMATION TO UNDERSTAND BEFORE YOU BEGIN

If a sensor fails or reads outside a "normal" range, a "preprogrammed" (default) value is substituted by the ECM until sensor reading returns to normal.

Sensor values can be viewed in Digital Wrench on the "Sensor Data Grid Or Graphs" screen. HOWEVER, the sensor reading may be actual feedback from the sensor, or it may be the default value set by the ECM in the event of a fault in the sensor or wiring.

The check engine ("ENG") warning may or may not illuminate to alert the rider of a possible problem, depending on the system fault. Following a check engine light, perform a visual inspection to see if a cause can be determined.

Connect the Digital Wrench to see what codes are present in memory, and focus your diagnostics on that sensor and the related wiring for that circuit. (Refer to wiring diagrams for ENG light circuits.

If multiple codes are set, refer to the wiring diagram and focus your efforts on wiring and connections common to each of the sensors. Multiple sensor failure is extremely unlikely.

The sensor tests described in this section are performed at the ECM wire connector. This method ensures that the data from a sensor is reaching the ECM. Sensor tests can be performed at the sensor if easily accessible, but the wiring between the sensor and the 60 pin ECM connector should always be closely examined and tested if the sensor itself passes the test.

Poor or corroded connections are the most common cause of system faults. Always check the integrity of the male pins and female receptacles of the connectors in the affected circuit. These may include the sensor connector, the ECM connector, and any in between the two such as jumper harnesses or the Engine-to-Chassis harness 14 pin connector where applicable.

TROUBLE CODES

P-CODE NUMBER	BLINK CODE	SPN	FMI	DESCRIPTION
P0107	45	102	4	Manifold Absolute Pressure sensor circuit voltage low - MAP portion of TMAP sensor circuit is open, or shorted to ground.
P0108	46	102	3	Manifold Absolute Pressure sensor circuit voltage high - MAP portion of TMAP sensor circuit is shorted to battery voltage.
P0112	41	105	4	Intake Air Temperature Sensor voltage low - Temperature portion of TMAP sensor circuit is shorted to ground.
P0113	41	105	3	Intake Air Temperature Sensor voltage high - Temperature portion of TMAP sensor circuit is open, or shorted to battery voltage.
P0117	42	110	4	Cylinder Head Temperature (CHT) Sensor voltage low - circuit shorted to ground.
P0118	42	110	3	Cylinder Head Temperature (CHT) Sensor voltage high - circuit open, or shorted to battery voltage.
P0122	22	51	4	Throttle Position Circuit voltage low - TPS open, or shorted to ground.
P0123	22	51	3	Throttle Position Circuit voltage high - TPS shorted to battery voltage.
P0171	34	520204	17	Fuel Correction - system too lean Cyl 1 (Front).
P0172	34	520204	15	Fuel Correction - system too rich Cyl 1 (Front).
P0174	35	520205	17	Fuel Correction - system too lean Cyl 2 (Rear).
P0175	35	520205	15	Fuel Correction - system too rich Cyl 2 (Rear).
P0217	-	110	16	Engine Temperature Sensor - temperature too high.
P0231	56	1347	5	Fuel Pump Driver Circuit - open or shorted to ground.
P0232	56	1347	3	Fuel Pump Driver Circuit - shorted to battery +.
P0261	51	651	5	Injector 1 (Front Cylinder) driver circuit open or shorted to ground.
P0262	51	651	3	Injector 1 (Front Cylinder) driver circuit shorted to battery voltage.
P0264	52	652	5	Injector 2 (Rear Cylinder) driver circuit open or shorted to ground.
P0265	52	652	3	Injector 2 (Rear Cylinder) driver circuit shorted to battery voltage.
P0336	44	636	8	Crankshaft Position Sensor fault - missing tooth signal not detected in CPS signal within the correct period of time.
P0443	82	520202	3	Canister Purge Valve - driver circuit short to battery +.
P0444	82	520202	5	Canister Purge Valve - driver circuit open or grounded.
P0503	26	84	2	Vehicle Speed Sensor - data erratic, intermittent, or missing.
P0508	47	520193	5	Idle Air Control (IAC) circuit or IAC motor shorted to ground.
P0509	47	520193	11	Idie Air Control (IAC) circuit or IAC motor open or shorted to battery voltage.
P0519	47	520193	7	Idle Air Control (IAC) position out of range.
P0562	31	168	4	System Voltage Low - Systern voltage too low after the engine has been running for a specific period of time.
P0563	31	168	3	System Voltage High - System voltage above allowable limit.
P0914	72	523	2	Gear Position Sensor Signal - signal fault
P0916	72	523	4	Gear Position Sensor Signal - voltage too low
P0917	72	523	3	Gear Position Sensor Signal - voltage too high
P1217	-	110	0	Engine Temperature Sensor - engine overheat shutdown. (2009 only)
TABLE CONTINUED ON FOLLOWING PAGE				

P-CODE NUMBER	BLINK CODE	SPN	FMI	DESCRIPTION
P1351	36	1268	5	Ignition Coil Primary Driver Cyl 1 (Front) - driver circuit open or grounded
P1352	37	1269	5	Ignition Coil Primary Driver Cyl 1 (Front) - driver circuit short to battery +
P1353	36	1268	3	Ignition Coil Primary Driver Cyl 2 (Rear) - driver circuit open or grounded
P1354	37	1269	3	Ignition Coil Primary Driver Cyl 2 (Rear) - driver circuit short to battery +
P1501	64	520200	2	Tipover Sensor (Rollover) - signal fault.
P1502	64	520200	4	Tipover Sensor (Rollover) - voltage low.
P1503	64	520200	3	Tipover Sensor (Rollover) - voltage high.
P1504	64	520200	14	Tipover Sensor (Rollover) - tipover condition detected.
P1651	55	1213	5	Check Engine Lamp (MIL) - MIL lamp driver circuit open or shorted to ground.
P1653	55	1213	3	Check Engine Lamp (MIL) - MIL lamp driver circuit shorted to battery voitage.
P1710	-	2369	5	Right Turn Indicator Driver Circuit - driver circuit open / grounded. (2009/2010 only)
P1711	-	2369	3	Right Turn Indicator Driver Circuit - driver circuit shorted to battery + (2009/2010 only)
P1714	-	2367	5	Left Turn Indicator Driver Circuit - driver circuit open / grounded. (2009/2010 only)
P1715	-	2367	3	Left Turn Indicator Driver Circuit - driver circuit shorted to battery + (2009/2010 only)

SPN / FMI ERROR CODES (Cross Country)

If the CHECK ENGINE (MIL) light is ON or when it goes on and off during one ignition cycle (key on / key off cycle) an ERROR message will appear after the normal LCD Information Display functions (Miles, Trip 1, Trip 2, Miles per Gallon, Average Speed, etc.). Use the MODE button to toggle through the various normal display options and view the ERROR message at the end.
The ERROR message consists of an FMI and an SPN number.

Example: ERROR 14 - 520200 corresponds to FMI 3 / SPN 520200 (and Trouble Code P1504) in the table above for this combination. The best course of action is to connect Digital Wrench to view logged codes directly and use the guided diagnostics for that code; however, if Digital Wrench is not available you can use the description of the FMI / SPN code to determine which system or component may be causing the code by reading the description from the table.

NOTE: Error codes are not stored. The error screen will only appear when the Check Engine light is ON. When the key is turned off, the code and message is lost, but it will reappear if the fault occurs again after starting the engine.

To retrieve error codes from the display:

1. If the error codes are not displayed, use the mode button to toggle until "Err" displays in the clock area.
2. Record the three code numbers displayed in the gear position, temperature, and odometer displays.
3. Refer to table above for a list of codes.

ECM HARNESS CONNECTOR TEST PRECAUTIONS

NOTICE: Tests in this section may require reading resistance and voltages at ECM connector. Once ECM connector has been removed from the ECM:

- Do not touch pins on the ECM. Static electricity from your body can damage the ECM.
- Do not attempt to perform tests on the ECM unit.
- Always use the appropriate test connector from the Electrical Connector Test Adapter Kit (PV-43526).
- DO NOT attempt to use a standard meter probe or other devices to probe the sockets in the ECM connector. Doing so could expand the terminal socket or damage the connector case, create a problem where none existed before, and complicate the diagnostic process.
- Sensor tests on the following pages can often be performed at the sensor connector itself or at the ECM connector based on accessibility of the connector or wiring.
- If you perform the test at the sensor and it tests within the specified range (OK), you should then test the circuit wiring, which usually originates at the ECM 60-pin connector, but may include other connections such as the Engine-to-Chassis harness 14 pin connector (located under the seat). Be sure to check all easily accessed connectors and wiring first, to reduce diagnostic time

ECM CONNECTOR REMOVAL

1. Remove left side cover.

NOTICE: The lock lever also serves as an eject / install mechanism for the 60 pin connector. When removing or installing the connector, you should pull or push lightly on the connector while sliding the lock lever to assist the mechanism, keeping the connector perfectly straight with the ECM to prevent ECM pin or connector block damage.
2. Clean the connector boot and surrounding area.
3. Cut tie strap (A) and move the Engine-to-Chassis
4. Pull back protective boot from ECM connector.
5. Pull connector lightly with one hand (arrow C) while sliding lock lever upward (arrow D).
6. Pull connector straight out of ECM.

ECM Connector Installation

1. Carefully align ECM connector straight with flange on ECM. (Do not tip or pivot the connector when installing it into the ECM).
2. Gently apply straight inward pressure on connector while sliding lock lever downward until it stops and connector is fully seated.
3. Install protective boot.
4. Install a new tie strap through slot of the harness dart and re-secure Engine-to-Chassis harness connector.

ECM REMOVAL

1. Remove left side cover.
2. Remove the ECM connector (procedure above).
3. Pull outward at each comer of ECM to release darts.

FUEL SYSTEM / FUEL INJECTION

EFI SENSOR CIRCUIT WIRING DIAGRAMS

NOTE: IAC diagram is on page 5.44
Color Codes: $\mathrm{OG}=$ Orange; $\mathrm{RD}=$ Red;
BK = Black; DB = Dark Blue;
$\mathrm{BN}=$ Brown; DG $=$ Dark Green
YE = Yellow; VT = Violet; GY = Gray
FUEL INJECTORS
LOCATION: Cylinder head.

OXYGEN SENSOR

LOCATION: Exhaust head pipe.

FUEL SYSTEM / FUEL INJECTION

EFI SENSOR CIRCUIT WIRING DIAGRAMS

NOTE: IAC diagram is on page 5.44 Color Codes: OG = Orange; RD = Red; $\mathrm{BK}=$ Black; $\mathrm{DB}=$ Dark Blue;
$\mathrm{BN}=$ Brown; DG $=$ Dark Green $\mathrm{YE}=$ Yellow; $\mathrm{VT}=$ Violet; $\mathrm{GY}=$ Gray

CRANKSHAFT POSITION

 SENSORLOCATION: Under timing cover (lower right engine).

CYLINDER HEAD TEMP (CHT)

LOCATION: Front cylinder head, left side.

THROTTLE POSITION SENSOR (TPS)
LOCATION: Left side of throttie body.

DIAGNOSTIC CONNECTOR LOCATION: Under left side cover.

SENSOR TESTS

THROTTLE POSITION SENSOR (TPS) DIAGNOSTICS

FAIL CODE: P0122 / P0123

INDICATES	INSPECT	LOCATION
Voltage received at ECM from TPS is outside of parameters.	Resistance readings at ECM connector. This test inspects TPS and wiring.	Left side throttle body

To view and clear trouble codes refer to page 5.34. See page 5.33 for wire colors / pin number in connector.

1. Disconnect ECM 60 pin connector (page 5.37).
2. Attach test lead adapters to meter leads and set DMM selector to measure resistance.
3. Place test leads in open side of connector (not the ECM) as indicated in chart below.
4. If results are outside of specifications, disconnect TPS.
5. Inspect wires for continuity from ECM connector to TPS connector. If any wire has no continuity or high resistance, inspect wire harness.
6. If good continuity exists, test TPS separately. Compare to chart below.

COMPONENT	METER SETTING	TEST CONNECTIONS	SPECIFICATIONS $(\pm 10 \%)$
TPS signal (OG $/ \mathrm{YE})$ to +5 VDC reference voltage (BN/RD)	OHMS	Pin \#53 to \#55	$1000-5000$ Ohm +/-1K Ohm. Resistance changes smoothly as throttle is opened and closed. No gaps.
TPS signal $(\mathrm{OG} / \mathrm{YE})$ to signal retum (BN/DB)	OHMS	Pin \#53 to \#46	$1000-5000$ Ohm +/-1K Ohm. Resistance changes smoothly as throttle is opened and closed. No gaps.
TPS +5 VDC reference wire (BN/ RD) to signal return (BN/DB)	OHMS	Pin \#55 to \#46	$1000-5000$ Ohm +/-1K Ohm. NOTE: Reading does not change with throttle position
+5 VDC reference voltage (BN/RD)	DC Volts	Red DMM lead to pin 3 of TMAP sensor. Black to ground.	Re-connect ECM 60 pin connector. Disconnect TMAP sensor connector at the sensor. Turn key and stop switch ON. Verify 5 Volts DC present at pin 3 of connector.

NOTE: Resistance readings may vary slightly from vehicle to vehicle. The important thing to remember when testing the TPS is to look for a smooth, uninterrupted sweep between closed and open throttle. Sweep can also be checked using Digital Wrench diagnostic software.

TEMPERATURE \& MANIFOLD ABSOLUTE PRESSURE SENSOR (TMAP) DIAGNOSTICS

FAIL CODE: P0107 / P0108 (MAP SENSOR COMPONENT OF TMAP SENSOR)		
COMPONENT AFFECTED: Manifold Absolute Pressure Sensor		
INDICATES	INSPECT	LOCATED
Voltage received at ECM from MAP sensor is outside of parameters.	Continuity of wires from ECM connector to TMAP connector at sensor. Check for +5 DCV at TMAP sensor BN / RD wire (ECM connector attached and Ignition key and stop switch ON.) Connect Digital Wrench for MAP sensor test. Approximate voltage examples: $\sim 0.6 \mathrm{~V} @ 30 \mathrm{kPa}$ $\sim 1.0 \mathrm{~V} @ 50 \mathrm{kPa}$	On rear cylinder head intake port.

To view and clear trouble codes refer to page 5.34. See page 5.33 for wire colors / pin number in connector.

1. Disconnect ECM 60 pin connector (page 5.37).
2. Disconnect TMAP sensor connector (push black tab).
3. Attach test lead adapters to meter leads and set DMM to measure resistance.
4. Place test leads in open side of connector (not the ECM) and measure resistance of each wire to the TMAP sensor connector. Verify good continuity on each wire (example: pin 53 of ECM connector to pin 4 of the TMAP connector should have less than . 5 Ohm resistance).
5. Re-connect the ECM connector.
6. Turn key ON and turn engine stop switch to RUN.
7. Set DMM to measure DC Volts.
8. Test for 5VDC reference voltage at connector (see test in table below).
9. Check the MAP Sensor Volts and pressure in Digital Wrench. Voltage should be approximately $0.6 \mathrm{~V} @ 30 \mathrm{kPa}$, (approximately $1.0 \mathrm{~V} @ 50 \mathrm{kPa}$), etc.

COMPONENT	$\begin{aligned} & \text { METER } \\ & \text { SETTING } \end{aligned}$	TEST CONNECTIONS	SPECIFICATIONS ($\pm 10 \%$)
+5 VDC reference voltage (BN/RD) to TMAP connector.	DC Volts	Red DMM lead to pin 3 of TMAP. Black DMM lead to ground.	Re-connect ECM 60 pin connector Disconnect TMAP connector from sensor. Turn key / stop switch ON. Verify 5 Volts DC present at pin 3 of connector. If Code 107 (Low voltage to MAP) code is present, jump pin 3 (5 V ref) to pin 4 (sigrtm). Does code go out? If yes, replace MAP Sensor. If no, check wiring.

AIR TEMPERATURE SENSOR (ATS) DIAGNOSTICS

FAIL CODE: P0112 / P0113			
COMPONENT AFFECTED: Air Temperature Sensor			
INDICATES	INSPECT	LOCATED	
Voltage received at ECM from ATS is outside of parameters.	Resistance readings at ECM connector (ECM disconnected). This test will inspect wiring, connectors, and Air Temperature sensor resistance.	Onrearcylinder head intake port (in TMAP sensor).	

To view and clear trouble codes refer to page 5.34. See page 5.33 for wire colors / pin number in connector.

1. Disconnect ECM 60 pin connector (page 5.37).
2. Attach test lead adapters to meter leads.
3. Set DMM to measure resistance.
4. Place meter leads in pins 38 and 46 of connector (not the ECM) and compare to specification.
NOTE: Temperature of engine / sensor must be as specified.
5. If reading is outside of specifications, disconnect air temperature sensor connector and verify wires have good continuity back to the 60 pin connector.
6. If wiring is correct, measure the sensor resistance directly at the sensor. In addition, ATS data can be viewed as a temperature value in Digital Wrench diagnostic software. The sensor should display a temperature close to ambient room temperature.
7. Replace TMAP sensor if out of specified range.

COMPONENT	METER SETTING	TEST CONNECTIONS	SPECIFICATIONS $(\pm 10 \%)$
AIR TEMPERATURE SENSOR signal return (BN/DB) to OG /DG	OHMS	Pin \#46 to \#38	$2.5 \mathrm{~K} \mathrm{Ohms}+/-5 \%$ at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$

5.42

CYLINDER HEAD TEMPERATURE SENSOR (CHT) DIAGNOSTICS

FAIL CODE: P0117 / P0118	
INDICATES	INSPECT
COMPONENT AFFECTED: Cylinder Head Temperature Sensor (Engine Temperature)	
Voltage received at ECM from CHT sensor is outside of parameters.	Resistance readings through sensor and wiring at ECM connector (ECM disconnected). This will test will inspect the wiring, connectors, and CHT sensor resistance.

To view and clear trouble codes refer to page 5.34. See page 5.33 for wire colors / pin number in connector.

1. Disconnect ECM 60 pin connector (page 5.37).
2. Attach test lead adapters to meter leads.
3. Set DMM to measure resistance.
4. Measure resistance between pin 46 and pin 39 of the ECM connector and compare to specification.
5. If resistance is out of specified range, disconnect sensor and measure the resistance through each wire from ECM connector to the sensor connector. Resistance should be less than 1 Ohm (good continuity).
6. If continuity is good from Step 5, measure the resistance through the sensor and compare to specification.

Left Side View

TEST\#	COMPONENT	METER SETTING	TEST CONNECTIONS	SPECIFICATIONS $(\pm 10 \%)$
CYLINDER HEAD TEMPERATURE SENSOR	OHMS	Pin \#46 to \#39	$30.5 \mathrm{KOhms}+/-13 \% @ 25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$	

IDLE AIR CONTROL (IAC)

Air leaks or air restrictions in the IAC air supply or delivery hoses will not cause a trouble code in the system, and are the most common cause of idle control problems. Always
be sure hoses are connected properly and securely when idle control problems exist. If an IAC code is present, perform the following circuit tests.

FAIL CODE: P0508 / P0509	INSPECT	LOCATION
INDICATES	Connector pin visual inspection. Continuity - Verify ECM to IAC motor harness connector.	IAC valve-under fuel rail cover. (Upper right side P0508 - IAC circuit or IAC motor shorted to ground. P0509 - IAC circuit or IAC motor open or shorted to battery voltage.
Verify battery voltage is supplied to IAC motor on VT/PK wire P0519-IAC position out of range	from Engine Relay.	

COMPONENT	$\begin{aligned} & \text { METER } \\ & \text { SETTING } \end{aligned}$	TEST CONNECTIONS	SPECIFICATIONS $(\pm 10 \%)$
IAC Circuit Resistance	OHMS	ECM pin 6 to IAC connector pin 3.	Less than 10 hm
IAC Circuit Resistance	OHMS	ECM pin 7 to IAC connector pin 1.	Less than 1 Ohm
IAC Circuit Resistance	OHMS	ECM pin 8 to IAC connector pin 6.	Less than 1 Ohm
IAC Circuit Resistance	OHMS	ECM pin 9 to IAC motor harness connector pin 4.	Less than 10 hm
Voltage Supply To IAC Motor Harness Connector	DCV	DMM "+" lead to Pin 2 or pin 5 of IAC hamess (VT/ PK). DMM "-" lead to ground.	Re-connect ECM 60 pin connector. Disconnect wire harness from IAC motor. Turn ignition key and engine kill switch ON. Check for battery voltage at pin 2 and pin 5 of IAC motor harness connector.

VEHICLE SPEED SENSOR TEST

To view and clear trouble codes refer to page 5.34. See page 5.33 for wire colors / pin number in connector.

1. Refer to Chapter 19 to test the speed sensor, located on the crankcase behind the rear cylinder (A).

GEAR POSITION SWITCH TEST

1. Refer to Digital Wrench and Chapter 19 to test the gear position switch on the vehicle. The harness connector is located at the top of the engine crankcase behind the side covers (near the speed sensor).

MEMORY CHECK SUM ERROR

To view and clear trouble codes refer to page 5.34. See page 5.33 for wire colors / pin number in connector.

FAIL CODE: P0601	
COMPONENT AFFECTED: ECM	
INDICATES	INSPECT / ACTION
Module Memory Check Sum Error when installing new ECM.	Clear code and check to see if code re-appears

NOTE: All new ECMs have the "Memory Check Sum Error" at first power-up after the memory is loaded into the ECM. This code must be cleared at the time the ECM is initialized. If this code appears when using the diagnostic software, it is possible that a new ECM was not cleared successfully. If this is the case, the code may be present without an actual fault.

1. If Trouble Code message P0601 (Internal Control Module Memory Check Sum Error) is present when using the diagnostic software, first record any other faults present, then try clearing the P0601 trouble code.
2. If the code reappears, further inspection is required; however, it is more likely the code was not cleared from memory during initialization, and will not be present after it is cleared.

TIPOVER SENSOR

Refer to Chapter 19 and Digital Wrench for tipover sensor information.

CRANKSHAFT POSITION SENSOR DIAGNOSTICS

See page 17.10 for CPS test procedure.

FAIL CODE: P0562 / P0563
COMPONENT AFFECTED: Battery Voltage to ECM

FAIL CODE: P0562 / P0563			
COMPONENT AFFECTED: Battery Voltage to ECM			
INDICATES			INSPECT
Voltage received at ECM is outside of parameters.	Vehicle Battery Voltage		

To view and clear trouble codes refer to page 5.34. See page 5.33 for wire colors / pin number in connector.

1. Turn the DMM selector dial to measure DC volts. Measure open circuit voltage at battery (page 18.7).
2. Battery voltage must be 12.5 VDC or above. If below 12.5 , charge or replace battery before proceeding.
3. Check the 15 A Engine fuse.
4. Connect red (+) DMM lead to Pin A of the Engine-to-
Chassis wire harness connector (under LH side cover).
5. Connect red (+) DMM lead to Pin A of the Engine-to-
Chassis wire harness connector (under LH side cover). Connect black (-) DMM lead to battery negative terminal.
6. Turn ignition key ON and cycle the engine stop switch from OFF to RUN. Battery voltage should appear on Pin A for 2-3 seconds after the engine stop switch is Pin A for 2-3 seconds after the engine stop switch is
turned ON. To repeat the test, leave key ON and turn stop switch OFF for at least 10 seconds before

BATTERY VOLTAGE AT ECM DIAGNOSTICS
repeating test.
6. Turn both ignition and engine stop switches OFF.
7. Attach test lead adapters to the DMM leads, or use Fluke accessory probes.
8. Disconnect ECM 60 pin connector (page 5.37).
9. Connect a jumper wire from Pin 11 in the ECM connector to ground. Verify battery voltage is present on pins 1 and 31 when Pin 11 is grounded. If voltage is not present, test related wiring If voltage is present. go to Step 10.
10. Check for power at ECM Pin 34 (for 2-3 seconds) with ignition key ON and engine stop switch set to RUN.

5.46

DIGITAL WRENCH

USING DIGITAL WRENCH DIAGNOSTIC SOFTWARE

Refer to Section 2, 3, and 4 in the Instruction Manual provided in the Diagnostic Tool Kit PV-46085 to install the Polaris Digital Wrench software on a laptop computer. Once installed, select the HELP icon (?) for more information.

TOOLS

DIGITAL WRENCH DIAGNOSTIC SOFTWARE	PART NUMBER
Victory/Polaris Diagnostic Tool Kit	PU-46085-A
	Digital Wrench Software: PU-48731
	Standard Interface Cable: PU-47151
	Victory Adapter: PV-46085-2
Fuel Pressure Gauge	SmartLink Interface Kit: PU-47471
Fuel Pressure Gauge Adapter	PU-43506-A
Relay Jumper (to run fuel pump)	PV-48656
Fluke 73 Digital Multi-Meter or Fluke 77 DMM	PU-49466
Electrical Connector Test Adapter Kit	PV-48656 (Fluke 77 PV-43568)
Laptop Computer (Refer to diagnostic software user manual or HELP section for minimum specifications	PV-43526

DIAGNOSTIC SOFTWARE VERSION

Always be sure you are using the most current version of Digital Wrench to ensure you have the latest enhancements. Reprogramming files are added to file sets as required for new models, new accessory kits, and fuel/ignition map updates. For information on how to determine if you have the latest file set download available, see Reprogramming Tips on page 5.53.

ECM REPLACEMENT

Although the need for ECM replacement is unlikely, a specific replacement procedure is required to ensure that all essential data contained within the original ECM is transferred to the replacement ECM.

Refer to procedure and carefully follow all instructions provided in Digital Wrench.

TPS CALIBRATION NOT REQUIRED

The TPS does not require calibration in the closed loop EFI system as in earlier systems. TPS Calibration is not a menu option in Digital Wrench for 2008-current models.

DIGITAL WRENCH FEATURES

Once connected to Digital Wrench, a variety of features are available for reference or to use as diagnostic tools.

You do not have to be connected to a vehicle to use the help feature.

Vehicle specific service reports can be saved for future reference.

Data grids with typical or "normal" sensor values can be saved for future reference. Some examples are shown on the following pages.

GUIDED DIAGNOSTICS AVAILABLE

Guided diagnostics are available within Digital Wrench for all supported Trouble Codes (that is, any fault that will turn on the CHK ENG light).

In addition, guided diagnostics are also available for many other electrical sub systems.

Diagnostic modules are added to subsequent versions of Digital Wrench as they become available. Check your release version often and upgrade to be sure you're using the most current tools available.

DIGITAL WRENCH COMMUNICATION ERRORS

If you experience problems connecting to a vehicle or any Digital Wrench related problem, visit the Digital Wrench Knowledge Base for the most current troubleshooting information, FAQs, downloads and software updates at: http://polaris.diagsys.com/.

Victory dealers can access the Digital Wrench site by visiting www. polarisdealers.com and clicking on the Digital Wrench Updates link in the Service and Warranty drop down menu.

5.48

DIGITAL WRENCH FEATURE MAP

DIGITAL WRENCH SCREEN EXAMPLES

DIGITAL WRENCH SCREEN EXAMPLES

Meter Display

PELRRIS

Idle stability, stalling, poor low speed driveability
Check for air leaks at throttle body:
View data item "Closed Loop Correction Factor".
Normal: .92-1.07
Air Leak: Above 1.10 (1.10-1.40)

Warm engine at idle. RPM has stabilized.

Change the position of various data items in the table with these buttons.

Add data item from menu

Click on graph to watch data item values in real time.
Save data grid for future reference.

DIGITAL WRENCH SCREEN EXAMPLES

REPROGRAMMING THE ENGINE CONTROL MODULE (ECM)

PROCESS OVERVIEW

The Digital Wrench Engine Controller Reprogramming (or Reflash) feature allows reprogramming of the ECM fuel and ignition map. To successfully reprogram the ECM, an Authorization Key must be obtained by entering a Request Code in the box provided on the Reflash Authorization site. The Request Code is automatically generated by Digital Wrench during the reprogramming process. The Reflash Authorization site is located under the Service \& Warranty drop down menu on the dealer website at www. polarisdealers.com.

The Radio System Update feature of Digital Wrench allows reprogramming of the main radio, CB radio, or Instrument Cluster in the same manner as the ECM. See Chapter 19 for Radio System Update information.

NOTICE: Failure to follow instructions completely and correctly can result in an engine that does not run! Review all Reprogramming Tips below and the following pages to reduce the chance of reprogramming problems.

REPROGRAMMING TIPS

The reprogramming feature is in the Special Tests menu on the Digital Wrench screen. Simply start Digital Wrench and click on the Special Tests menu icon (the red tool box). A technician should be familiar with the process and with computer operation in general before attempting to reprogram an ECM.
If you have not yet installed the software, read the Install Instructions in the Getting Started section of the Diagnostic System Installation Guide and User Manual. Laptops that fit the System Requirements guidelines listed in the User Manual can be used for reprogramming. Pay close attention to system requirements listed for the Windows version on your laptop (Page 3 of User Manual).

1. BATTERY VOLTAGE: The majority of problems with reprogramming can be attributed to a low battery. Be sure the battery voltage (no load) is at least 13 volts and at least 12.5 volts with the key ON. Connect a battery charger if necessary to bring voltage level above minimum. Fully charge the battery before you attempt to reprogram, or leave a charger connected during the process. If "Key ON" voltage is marginal, it may help to remove the headlamp relay in the fuse box.
2. DEDICATED LAPTOP: Best results are obtained using a laptop computer that is "dedicated to Polaris/Victory service". A laptop that is used by a variety of people and in several applications around the dealership is more likely to cause a reprogramming problem than one dedicated to Digital Wrench diagnostics only.
3. OBTAINING THE LATEST FILE SET:

Reprogramming file sets are updated periodically and contain the most recent calibrations for both Stock and Performance updates. If you have the most current version of Digital Wrench (version 3.1 dated 9-25-09 as of this printing) your file sets are current. If you attempt to load a non-current reprogramming file you will be advised when you connect to the Reflash Authorization Website.

As new file sets are obtained, all earlier file sets should be deleted immediately from your laptop to prevent Digital Wrench errors.
To see what version of digital wrench you currently have installed, start Digital Wrench and look on the right side, just above the icon bar.

Compare your version with the version listed in the Downloads area at www. diagsys.com. If a later version is available, follow the instructions provide to download the most current version of Digital Wrench which will also update your file set with the most current available.

4. CLOSE NON-ESSENTIAL PROGRAMS:

Victory recommends that you DO NOT install nonessential programs on a Service Department laptop. Camera detection software, Virus Scanners, Tool Bars, etc. may clog up memory if running in the background and make it harder for the diagnostic software to operate. A good "quick check" is the number of icons in the system tray, (icons in the task bar next to the clock). More than 4 , or 5 items is a potential problem. Things to watch out for include:

- Video playing software
- Automatic programs started by your ISP.
- Financial software (checking account, business operations and accounting, tax reporting software etc.)
- All "shareware" \& "freeware" downloaded from the internet
- Personal hand-held PC links (can prevent diagnostic software / reprogram procedure from working)
- Internet firewalls set to "high security mode" or virus scanning software running in the system tray.
A good rule to follow is that if a particular piece of software wasn't installed when Windows was installed, it has the potential to create problems if it's running at the same time as the diagnostic software. If you're having problems, click on the icons of non-essential programs and close, quit, or exit them before starting the reprogramming procedure.

5. KNOW THE PROCESS: If you are not familiar with the entire reprogramming process, review the HELP section of the diagnostic software before you attempt reprogramming. Click on the ? on the toolbar or press F11. The information in the on-line help is the most current and complete information available. This should be your first step until you are familiar with the process.

6. COMMUNICATION PROBLEMS: If you have had problems communicating with a vehicle while performing diagnostic functions, do not attempt reprogramming until the cause has been identified and fixed. Check all connections, and be sure battery voltage is as specified in Step 1.

Go to www.diagsys.com for specific information and FAQs on how to troubleshoot communication problems.

7. DON'T DISTURB THE PC: when a reprogramming is in progress. Don't move the mouse, and don't touch the keyboard. The process only takes a few seconds, and is best left alone until complete.
8. You can select Vehicle Information from the Special Tests menu to view the part number of the software (map) installed when reprogramming is completed.

REPROGRAMMING PROCESS

If you are not familiar with the reprogramming process, review tips beginning on page 5.53 before you begin. Following is an overview of the reprogramming process. Follow the on-screen instructions as you progress through the steps. If you encounter a problem, always check the On-Line help for current tips and information.

1. Connect the communication cable to the diagnostic connector (A) under the left side cover.

2. Start the Digital Wrench program.
3. Select the year, product, and model from the menus, then click the tool box icon to open the Special Tests menu.

4. Select Engine Controller Reprogramming.

5. Select the file you want to load into the ECM then click CONTINUE to proceed to the Integrity Check and obtain a Request Code.

6. Copy the Request Code that will be required on the web site in the next step. DO NOT CLOSE Digital Wrench or the Request Code will be invalid. All characters are letters; there are no numbers in a request code.
NOTE: Request Codes, Calibration I.D. numbers (for accessory exhaust) and Authorization Keys must be entered EXACTLY as they appear on the screen.
 $\longrightarrow 5.55$
7. Go to www.polarisdealers com and click on "Re-Flash Authorization from the Service and Warranty dropdown menu.

8. Enter (or paste) the Request Code into the box.
Enter Request Code
9. Select the same file type from the list that you selected previously (e.g. Stage 1 Cross Roads Level 1 Slip-On Pipe), and click the Authorize button to proceed to the next screen.

10. In the empty box provided on the screen, enter the 9 digit Calibration I.D number from the card enclosed with the accessory kit, then click "Continue".

NOTE: Stock reprogramming files do not require a Calibration I.D. number. An Authorization Key will appear after clicking the Authorize button in Step 9.

11. An 8-digit "AUTHORIZATION KEY" will be appear in the upper left corner of the screen. Copy this number exactly as it appears, and enter it in the Authorization Key box on the Digital Wrench screen. Follow instructions provided on the screen to complete the reprogramming procedure.

TROUBLESHOOTING

FUEL SYSTEM TROUBLESHOOTING

PROBLEM	POSSIBLE CAUSE	AFFECTED PART(s)	REPAIR RECOMMENDED
Engine turns over with electric starter, but won't start	Compression too low	See engine section	
	No spark at spark plugs	See ignition system	
	No fuel reaching intake tract	Out of fuel Blown Fuse Plugged fuel filters / lines Fuel pump not working Fuel pressure regulator Faulty fuel pump relay Open wiring / connector Faulty connection at ECM	Add Fuel Replace Clean/Replace Test / Replace Test / Replace Test / Replace Inspect / Repair Inspect / Repair
	Excessively rich or lean fuel mixture	Fuel pump Fuel pressure regulator Crank Position Sensor Low Battery TMAP sensor CHT sensor Fuel Injector	Test / Replace Test / Replace
	Spark at wrong time or no spark. Fuel delivery timing incorrect.	Timing Wheel or CPS installed incorrectly, damaged, or dirty; faulty CPS	Install correctly, inspect for proper air gap (gap is preset but cover, sensor, and timing wheel must be clean and in good condition).
Poor Idle / High Idle	Excessively rich or lean fuel mixture	Low Battery Voltage Air Leaks Air restriction in IAC Fuel Pump Fuel injector or fuel rail obstructed or leaking Air Filter Wrong Fuel / Old Fuel Crank Position Sensor Throttle Plates	Inspect Battery \& Charging Inspect IAC system Inspect IAC hoses and fittings Inspect fuel pressure Replace Replace Inspect / Replace Inspect / Replace Remove carbon residue
Poor Running in Higher RPM Range	Air intake restriction Oil Overfilled Ignition problems Low Battery Voltage Loose, corroded, or wet connector(s) Valve train problems	Air filter Ignition Coil(s) / plug wires Battery ECM and wiring harness Valve springs, valve, head	Inspect Inspect oil level and condition Refer to ignition section. Charge or replace Unplug connections - inspect Inspect cylinder head \& valves

FUEL SYSTEM TROUBLESHOOTING (cont.)

PROBLEM	POSSIBLE CAUSE	AFFECTED PART(s)	REPAIR RECOMMENDED
Engine Stalls	Fuel Pump Problem	Low battery voltage Faulty fuel pump No signal from ECM Wiring problem	Battery/Charging system Check fuel pressure Repair Wiring Repair/Chk Pump Relay
	Excessive rich or lean fuel/air mixture	TMAP Sensor Plugged fuel filter Fuel pump (pressure) Fuel pressure regulator Vacuum leak Wiring problem Air Filter Low battery voltage	Repair / Replace Replace Test / Replace Test / Replace Pump Assembly Repair / Replace hoses Repair Replace Ck battery \& charging system
	Control Circuit/Sensors not functioning correctly	Fuel pressure regulator TPS Engine speed sensor Fuel pump relay Rotor Fuse ECM Relay Low battery voltage ECM	Test Pressure / Replace Test / Replace Test / Replace Test / Replace Inspect / Install correctly Replace Replace Inspect Charging system
	Valve train problems or Compression low	Refer to chapter 7	
Backfiring	Low Battery Voltage Ignition Problem Air leaks Restricted air intake or throttle body	Battery, spark plug fouled, poor wire connection for ignition or fuel injection, loose pin in multi-pin connector for ECM or wiring harness Inlet Manifold and Exhaust IAC Hoses Intake tract / Throttle body	Refer to battery section Replace plugs / diagnose Inspect wiring connections Disconnect and check pin connections Seal inlet or exhaust leaks (NOTE: Air leaks at throttle body can often be identified using Digital Wrench to view the Closed Loop Correction Factor data item. Normal is between . 92 and 1.07 . Higher numbers (1.25-1.35) could indicate a leaking manifold. Clean air inlet tract and/or throttle body / throttle plates.

FUEL SYSTEM TROUBLESHOOTING (cont.)

PROBLEM	POSSIBLE CAUSE	AFFECTED PART(s)	REPAIR RECOMMENDED
Poor Running in upper rpm ranges	Control Circuit/ Sensors not functioning correctly	Engine speed sensor TPS Air temperature sensor Manifold Absolute Pressure sensor Intermittent wiring / connector problem ECM	Test / Replace Test / Replace Test / Replace Test / Replace Repair/Replace Test / Replace
	Fuel delivery incorrect	Plugged or kinked fuel and/ or vent hoses Fuel pump Fuel regulator Fuel filter Battery/Charging System Fuel Injector plugged Contaminated fuel (water, additives, etc.) Inadequate octane Defective throttle valve Low battery voltage	Repair/Replace Test / Replace Test Pressure / Replace Test / Replace Charge/Replace Clean/Replace Clean/Replace Use correct fuel Replace throttle body Charging system
	Air intake restriction	Dirty Air Cleaner Intake restriction	Clean Repair
	Air Leak	Throttle body gasket surfaces Intake manifold Throttle body	Repair/Replace Repair/Replace Repair/Replace
Engine lacks power	Engine component problems Ignition problems Overfilled with oil	See chapter 7,8 See chapter 17 See chapter 2	
	Improper fuel delivery	Plugged fuel injector TPS Dirty air cleaner Vacuum leaks Fuel pump Fuel pressure regulator Air temperature sensor Engine speed sensor TMAP sensor Plugged vent hose Low battery voltage ECM	Replace Inspect / Replace Replace Repair / Replace Test / Replace Charge Battery / Replace Test batt./Charging system Test / Replace

FUEL SYSTEM TROUBLESHOOTING (cont.)

PROBLEM	POSSIBLE CAUSE	AFFECTED PART(s)	REPAIR RECOMMENDED
Engine overheats	Internal Engine Parts Lubrication \& Cooling system Low or incorrect oil Brakes dragging Drive belt too tight Ignition timing incorrect Spark plug(s) Low battery voltage	Cooling System Cooling System Engine Oil Brake systems Drive Belt Ignition Coils Faulty coolant temperature sensor Faulty engine speed sensor Faulty ECM Heat range incorrect Charging System Faulty Battery Faulty Wiring	Refer to chapter 4 Refer to chapter 4 Refer to chapter 3 Refer to chapter 15 Refer to chapter 3 Refer to chapter 17 Replace Replace Replace Replace Refer to charging section Replace Repair
	Lean Air/Fuel mixture	Fuel pressure regulator vacuum hose kinked or plugged Air leak Fuel injector plugged Coolant temperature sensor Vent hose plugged/ kinked Air leak at throttle body to manifold seal	Repair/Replace Repair Clean/Replace Replace Repair Repair
Won't Accept New Calibration	Non-Current Calibration File Set Low Battery Voltage Attempting Re-Flash Without Proper VIN, Calibration I.D. number, or calibration authorization code		Go to Dealer website (Victory ReFlash) and download the most current Victory Calibration File Set Attach Battery Charger During Re-Flash, and ReCharge Battery When Re-Flash Is Completed Enter Authorization Code Sent With Accessory Kit

CHAPTER 6
 ENGINE REMOVAL \& INSTALLATION

OVERVIEW - ENGINE REMOVAL 6.2
GENERAL 6.2
SPECIFICATIONS 6.2
SPECIAL TOOLS 6.3
TORQUE VALUES 6.4
ENGINE MOUNTING - AIRBOX / MAIN FRAME ASSEMBLY 6.4
ENGINE REMOVAL
6.5
PREPARATION FOR REMOVAL
6.5
PRECAUTIONS
6.5
6.5
REMOVAL PROCEDURE 6.11
ENGINE INSTALLATION 6.12
PREPARATION FOR INSTALLATION 6.12
INSTALLATION PROCEDURE 6.12
ENGINE ATTACHMENTS \& NOTES 6.15

ENGINE REMOVAL \& INSTALLATION

OVERVIEW - ENGINE REMOVAL

GENERAL

Swingarm removal is required to access the bolts that fasten the engine to the rear subframe on Cross Roads and Cross Country models. The front wheel must be secured in the wheel vise of a motorcycle lift, the engine supported securely on a platform lift, and the rear subframe supported with an overhead hoist or shop crane when the swingarm is removed. In order to complete the work safely and correctly, be sure all special tools and equipment are available before you begin. Arrange for assistance when removing and installing the engine.

Engine Mounting Plates PV-48737 must be installed and tightened before the engine is removed to maintain alignment between the front and rear frame sections and simplify the engine installation process.

After engine is removed, the swingarm (and rear shock and strut) can be temporarily installed so motorcycle is self supported. An engine stand is recommended for disassembly and assembly of engine.
Engine removal and installation methods may differ slightly depending on available equipment, but always be sure the engine and chassis are securely supported and secured at all times.

A. warning

Care should be taken to be sure the motorcycle will not tip or fall while elevated. Severe personal injury or death could occur if the motorcycle or engine tips or falls.

REQUIRES ENGINE REMOVAL FOR SERVICE	CAN BE SERVICED WITH ENGINE IN FRAME
Camshaft	Alternator
Camshaft Chain / Guide / Tensioner Blade	Cam Chain Tensioner
Crankcase Breather Reed Valve	Clutch
Crankshaft \& Crankshaft Component Service	Fuel Injectors / Fuel Rail
Cylinder Heads	Throttle Body
Valve Covers	Ignition System
Oil Pump	Output Shaft Seal
Oil Pump Drive / Balance Shaft	Starter, Starter One-Way Clutch, Starter Torque Clutch,
Piston / Cylinder	Gearshift Linkage and Gear Shift Mechanism
Transmission / All Internal Transmission Parts	Torque Compensator Assembly

SPECIFICATIONS

ENGINE WEIGHT and OIL CAPACITY	
Item	Specifications
Engine Dry Weight	Approximately 120 Kilograms (265 lbs)
Oil Capacity	Approximately 4.75 Liters (5.0 Quarts)

SPECIAL TOOLS

ENGINE REMOVAL SPECIAL TOOLS AND EQUIPMENT	
Item	Part Number
Engine Mounting Plates	PV-48737
Motorcycle table lift with wheel vise	Commercially Available
Engine platform jack or platform lift	Commercially Available
Overhead hoist or shop crane	Commercially Available
Engine stand.	Commercially Available

TORQUE VALUES

ENGINE MOUNTING - AIRBOX / MAIN FRAME ASSEMBLY

6.4

ENGINE REMOVAL

PREPARATION FOR REMOVAL

A number of different methods can be used to remove the engine depending on the equipment available to the technician.

- Support motorcycle securely in an upright position during engine removal. Clamp front tire securely on a stable motorcycle lift and secure the front wheel in the wheel vise.
- Clear the work area so rear and sides of motorcycle are accessible with lift equipment.

PRECAUTIONS

- Clean engine thoroughly before removal. Cover openings during and after engine removal.
- Note routing of wires, cables and hoses. Refer to routing diagrams throughout this manual for more information.
- Always note the location of tie straps, dart straps, or any one-time-use fastener and replace with new parts in the same location upon assembly.

REMOVAL PROCEDURE

Remove the list of items in this general order. Refer page listed for procedure.

1. Remove:

- Side covers and seat (page 3.21).
- Saddlebags (page 3.22).
- Engine oil (page 2.2) and mufflers (page 3.29).
- Ignition switch and IAC covers (page 3.5).
- Highway bars and horn bracket (page 3.19).
- Chin fairings (outer, inner, and rear) (page 3.18).
- Battery (page 2.20).
- Fuel tank and fuel line (page 5.15).
- Left footrest with shift linkage (page 3.26).
- Engine crankcase breather hose.
- Left passenger footrest, rear brake line clamp (A), tie strap (B), and line guide (C) from swingarm.
- Rear brake line clamp (D) on left cradle (near sidestand mount).

- Remove oil cooler and lines (page 4.6).
- Disconnect clutch cable from lifter arm on primary cover (page 2.12) and remove cable from bracket.

2. Remove starter motor $(+)$ cable from motor or solenoid (E), ground wires (F), wires from load side of circuit breaker (G), and brake light switch wires (H). Disconnect Regulator/Rectifier 3-Pin connector from stator.
3. Remove (3) battery box screws (1) at front of left cradle and remove left cradle.

4. Remove right floorboard support bolts (J) then remove rear master cylinder assembly from floorboard mount by removing bolts (K) and clip (L) with clevis pin. Support master cylinder and reservoir. Do not allow assembly to hang from brake lines.

5. Remove left side cradle bolts (M) then remove cradle with sidestand attached.
6. Open clip to release front head pipe oxygen sensor wire. Disconnect sensor wire at harness connector (do not attempt to disconnect wire from sensor).
7. Cut tie strap (N) that secures brake line to rear right side of battery box.
8. Remove right side cradle bolts (O) then remove cradle with battery box attached. Set assembly aside with brake master cylinder, reservoir, and line supported.

9. Disconnect rear oxygen sensor wire at harness connector (do not attempt to disconnect wire from sensor).
10. Loosen front head pipe flange nuts (P) about two turns. Remove rear head pipe flange nuts (Q).
11. Loosen clamp (R) and remove bolt (S) on left side.

NOTE: The exhaust header cross-over pipe is attached to a plate with an M6 allen screw on the left rear corner of the engine (M5 drive head).

12. Remove nut from right side of swingarm pivot shaft that secures the right side passenger footrest bracket, then remove the lower bracket fasteners.
13. Pull rear head pipe outward to loosen front head pipe clamp joint (R, above) then slide passenger foot rest bracket off swingarm pivot shaft and remove bracket.
14. Remove front head pipe flange nuts and remove head pipe assembly.

ENGINE REMOVAL \& INSTALLATION

15. Loosen rear axle nut about 3 turns. Loosen belt adjusters (T) equally on each side 2-3 turns. Tap wheel / axle forward to remove belt tension.

16. Remove drive sprocket cover and drive belt.

NOTE: Do not kink or twist the drive belt.
NOTE: If you plan to disassemble the engine crankcase, remove drive sprocket (page 11.5).
17. Remove ignition switch bracket with coil and switch attached. Lift tab (U) to disconnect coil. Push tab (V) to disconnect ignition switch.

18. Disconnect IAC air supply hose (W) from frame, and air delivery hoses (X) from throttle body.

19. Push tab (Y) to disconnect IAC valve. Remove bracket (M5 ball-drive allen), valve, and hoses.
20. Remove cables from bracket and throttle reel. The bottom cable (Z) is the PULL cable and is darker in color than the upper (PUSH) cable.

SENSORS - LEFT SIDE and REAR ENGINE

21. Push black tab (A) and disconnect the TPS harness from throttle body.

22. Slide oil pressure switch connector off switch and cut tie strap (B) that secures the wire to the crankcase.

23. Push black tab on left side of connector to disconnect speed sensor (C).
24. Push white tab to disconnect gear position sensor.
25. Lift black tab to separate CPS harness.
26. Remove ground wire screw (D) near clutch cable bracket.

SENSORS - RIGHT SIDE

27. Push black tab (E) to remove TMAP sensor harness from sensor.
28. Push white tab (F) to disconnect engine temperature sensor.

29. Secure wire harness out of the way of engine removal.

ENGINE REMOVAL FROM FRAME

30. Place a platform lift (commercially available) under engine crankcase and lift engine just enough to support the engine (do not elevate wheel or frame).

31. Remove upper rear engine mount bolts and plates.

32. Install Engine Mounting Plates PV-48737 in place of original upper rear engine mount plates using four of the 5 bolts removed in previous step (see page 6.3).
33. Torque all bolts to $111 \mathrm{Nm}(82 \mathrm{lb}-\mathrm{ft})$.

34. After PV-48737 plate fasteners are tightened, remove front upper engine mount bolts and plates.

35. Remove the swingarm pivot shaft nut and washer from the RIGHT side.

NOTE: The (4) lower engine mount bolts will contact the swingarm and cannot be removed until swingarm is removed.

36. Support the rear frame with a shop crane or an overhead hoist. Be sure the front wheel is secured in the wheel vise, and the engine is properly supported and secured on the platform lift.
37. Remove lower shock bolt and lower strut bolt (G).

ENGINE REMOVAL \& INSTALLATION

38. Push swingarm pivot shaft out with a suitable drift, and lower the front of the swingarm to the work bench.
39. Completely remove the (4) lower rear engine mount bolts (H) with a 16 mm socket.

40. When all fasteners have been removed, ensure all hoses, wiring and other components have been disconnected or removed.

NOTE: Injector wires are easier to disconnect, reconnect, and secure to the fuel rail when engine and throttle body are lowered out of the air box I frame. It is not necessary to disconnect the injector wires at this time.
41. Slowly lower engine and move it forward slightly to release engine from rear crankcase alignment pins.
42. When engine is free of frame and alignment pins, carefully lower it enough to allow throttle body adaptor to clear the airbox/frame assembly. Place clean shop towels in the intake to prevent contamination.
43. With engine lowered, cut tie straps (I) that secure the front and rear injector wire harness to the fuel rail.

44. Lift red lock tab on injector harness connector. Push black tab to remove harness from injector. Be sure injectors are aligned properly after re-connecting wires upon installation (see Chapter 5).

45. Lower the engine and remove out the right side.
46. Cover any openings with a clean shop towel to prevent contamination.
47. Temporarily re-install swingarm, shock, and strut if necessary so vehicle can be moved.

NOTE: Attach engine securely to an engine stand to prevent damage and for ease of disassembly. Use spacers as needed for stand you are using. If crankcases will be separated, use two left crankcase mounts only.

INJECTOR REMOVAL

IMPORTANT: Debris could have collected in and around injector cavities. If injector removal is required, clean cavity and surrounding area with compressed air before removing injectors. If removed, injectors must be indexed properly to the fuel rail (aligned) to ensure proper spray pattern.

See Chapter 5 for injector installation.

ENGINE INSTALLATION

PREPARATION FOR INSTALLATION

Refer to page 6.4 for torque values and assembly views.

A. CAUTION

Arrange for assistance when installing engine. The engine must be held securely and aligned properly to prevent damage to engine, frame, wiring, or hoses. The engine is very heavy and could cause severe personal injury if not handled properly. Be sure engine is properly supported before proceeding.

IMPORTANT: Be sure alignment pins are in place on engine crankcase.

INSTALLATION PROCEDURE

1. Clean mating surfaces of rear sub frame and engine crankcase. Lightly grease the alignment pins.
2. Move engine on a table lift into position through RIGHT side.
3. Move the lift until the throttle body adaptor is centered and aligned under the air box seal.

4. Connect both front and rear injectors.

NOTE: White I Gray injector wire is Rear cylinder; White / Blue is Front cylinder.
5. Route front injector wire harness along top of fuel rail toward throttle reel. Secure harness to the fuel rail with a tie strap (A) located about 6 mm ($1 / 4$ inch) past the IAC fitting, on the throttle reel side.

6. Route rear injector wire harness along top of fuel rail toward throttle reel. Secure harness to the fuel rail with a tie strap (B) located about 6 mm ($1 / 4$ inch) past the IAC fitting, on the throttle reel side.

7. Attach a shop crane or an overhead hoist to the rear frame section.
8. Remove swingarm pivot shaft and lower shock and strut bolts (if they were re-installed after engine removal) and lower the swingarm to the work bench.
9. Apply a rubber lubricant (sparingly) or a light film of oil to the throttle body adaptor and air box seal.
10. Raise engine until throttle body adaptor (C) is fully engaged and flush with the airbox seal (D). Be sure seal is not rolled, folded, or misaligned.

11. Use the crane or overhead hoist to adjust the height of the rear frame section and align the rear mounting bolt holes.

12. When alignment is correct, install all (4) lower rear bolts.

A. CAUTION

Be sure engine is aligned at the proper height and angle with the bolt holes. DO NOT force engine alignment using the mounting bolts or the crankcase threads, rear sub frame, or alignment pins may be damaged! Adjust engine height and angle continuously as required while drawing up the bolts.
13. Tighten rear engine mount bolts to draw engine flat against sub frame and onto alignment pins.
14. Tighten all 4 bolts to $61 \mathrm{Nm}(45 \mathrm{lb}-\mathrm{ft})$.

15. Grease right side swingarm needle bearing and both seals, and install bearing sleeve.
16. Be sure stepped spacers are in place on the spherical bearings on the swingarm (for lower shock and strut mounts).
17. Lift swingarm while aligning lower shock and strut clevis over the stepped spacers and spherical bearings. Install bolts and loosely install nuts.

18. Raise or lower the rear crane or overhead hoist as required to align the swingarm with the pivot shaft bore on frame, and install the pivot shaft.
19. Install washer and nut on right side of pivot shaft. Torque nut to $88 \mathrm{Nm}(65 \mathrm{lb}-\mathrm{ft})$.

20. Torque lower shock and strut bolts to $80 \mathrm{Nm}(60 \mathrm{lb}-\mathrm{ft})$.

21. Lower and remove the rear frame crane or hoist.
22. Install front upper engine mount plates.
23. Torque all front mount bolts to $111 \mathrm{Nm}(82 \mathrm{lb}-\mathrm{ft})$.

24. Remove the PV-48737 Engine Mount Plates from the upper rear mount.
25. Install original rear upper engine mount plates and tighten all bolts evenly hand tight.
26. Torque all upper rear mount bolts to $111 \mathrm{Nm}(82 \mathrm{lb}-\mathrm{ft})$.
27. Install M6 screw (E) in top of side panel on each side $5.4 \mathrm{Nm}(48 \mathrm{lb}-\mathrm{in})$.

28. Remove platform jack or platform lift.

ENGINE ATTACHMENTS \& NOTES

29. Route oil pressure sensor wire behind engine and toward the sensor on the left rear crankcase. Attach sensor wire to sensor and secure it to the left rear crankcase with a tie strap through hole (F) provided.

30. Install throttle cables onto cable bracket (dark cable is PULL cable and located on the bottom). Torque nuts to 5.4 Nm ($48 \mathrm{lb}-\mathrm{in}$). Adjust cable free play (page 2.10).
31. Connect cruise cable to throttle reel (if equipped) and snap cable securely into bracket.
32. Route wire harnesses to general location and connect:

- Ground wires to left rear crankcase 9.8 Nm ($87 \mathrm{lb}-\mathrm{in}$).
- Engine temperature sensor
- TMAP sensor
- CPS
- Speed sensor
- TPS
- Horn and bracket

33. Install engine breather hose.
34. Loosely install front left and right frame cradles with alignment pins (G) and M10 bolts (H).
35. Move rear brake line, battery box, and master cylinder to general mounting location.
36. Install a new dart strap for brake line (if removed) to right rear side of battery box.
37. Loosely install (3) screws (I) \& (J) through front of each frame cradle to battery box.

38. Fully tighten left and right frame cradle bolts (H) to engine.
39. Fully tighten left and right battery box screws (1 \& J).
40. Install starter motor lead and torque to 6.8 Nm ($60 \mathrm{lb}-\mathrm{in}$).
41. Install regulator/rectifier to engine (if removed) and torque fasteners to $9.6 \mathrm{Nm}(85 \mathrm{lb}-\mathrm{in})$. Connect 3 -Pin stator connector.
42. Install harness ground wires and regulator rectifier ground wire to engine. Torque screw to 9.6 Nm (85 lb in).
43. Attach removed wires to circuit breaker terminal and torque nut to $2.8 \mathrm{Nm}(25 \mathrm{lb}-\mathrm{in})$.
\qquad
44. Install oil cooler (page 4.6).
45. Install drive sprocket (if removed). Torque to 244 Nm ($180 \mathrm{lb}-\mathrm{ft}$). (See Chapter 11).
46. Install drive belt and sprocket cover. Torque cover bolts to $9.6 \mathrm{Nm}(85 \mathrm{lb}-\mathrm{in})$.

NOTE: Drive belt is installed with "VICTORY" readable from right side. Do not kink or twist the drive belt.
47. Adjust belt tension and tighten axle nut (page 2.25).
48. Install new exhaust head pipe gaskets.
49. Install head pipe assembly along with right side passenger footrest bracket as an assembly.
50. Loosely install head pipe flange nuts, lower footrest bracket bolt, and footrest bracket nut with washer.
51. Tighten fasteners in the following sequence:

- Draw rear head pipe bracket (a) against crankcase with lower passenger footrest fastener (b) then back off fastener $1 / 4$ turn.
- Tighten head pipe flange nuts (c) evenly.
- Tighten footrest bracket nut (d).
- Tighten lower footrest bracket fastener (b).
- Tighten head pipe clamp (e).
- Tighten screw (f).
- Install mufflers with shields (page 3.29).

52. Install clutch cable to bracket on crankcase ($5.4 \mathrm{Nm} /$ $48 \mathrm{lb}-\mathrm{in}$) and connect cable to lifter arm.
53. Install rear brake line guide to swingarm (K) and line clamp (L) to left frame cradle.
54. Install rear master cylinder onto brake pedal support. Torque mounting bolts (M) to 24.4 Nm ($18 \mathrm{lb}-\mathrm{ft}$).

55. Install right floorboard assembly. Torque bolts (N) to 47.5 Nm ($35 \mathrm{lb}-\mathrm{ft}$).

56. Install left floor board assembly with shift arm.

57. Install battery (page 2.20).
58. Apply dielectric grease to battery terminals and connect battery cables. Torque terminal bolts to 4.5 Nm ($40 \mathrm{lb}-\mathrm{in}$).
59. Install chin fairings (page 3.18).
60. Install highway bars (page 3.19).
61. Install fuel tank (page 5.16).
62. Secure clutch cable with a tie strap to upper right engine mount bracket with lower wire harness (O) and evaporative emission purge valve hose (P) (California models).

63. Secure engine and chassis wire harness to left upper engine mount plate with a tie strap (Q).

64 . Two tie straps secure upper and lower branches (R) of harness under left side cover.

65. Install saddlebags
66. Install new oil filter and fill crankcase to proper level with Victory engine oil (Chapter 2).
67. Inspect operation of all cables and controls and adjust (Chapter 2).
68. Add fuel to fuel tank and prime fuel system (page 5.14).
69. Start engine and inspect for oil leaks.
70. Pump front brake lever and rear brake pedal to seat pads against disc. Test brakes to be sure operation and pedal pressure are normal. Bleed brake system if necessary (Chapter 15).
71. Test ride motorcycle; check all systems for proper operation.
72. If equipped with Cruise Control, perform cruise control cable "Lash Learn" procedure (Chapter 19) and test ride to verify proper operation of the cruise control set speed and cancel functions.
73. When test ride is completed, again check entire vehicle and engine for fluid leaks and be sure all fasteners have been properly tightened.
74. Inspect oil level and adjust if necessary.

ENGINE REMOVAL \& INSTALLATION

NOTES

CHAPTER 7

CYLINDER HEAD \& VALVE TRAIN

GENERAL INFORMATION 7.2
IMPORTANT NOTES 7.2
SPECIAL TOOLS 7.2
DATA - CYLINDER HEAD 7.3
SPECIFICATIONS 7.3
TORQUE VALUES AND ASSEMBLY VIEWS 7.4
CAM DRIVE \& VALVE COVER 7.4
CAMSHAFT CARRIER / ROCKER ARM 7.5
CYLINDER HEAD 7.6
CAMSHAFT TIMING QUICK REFERENCE 7.7
CYLINDER HEAD SERVICE 7.8
CAMSHAFT DRIVE COVER 7.8
VALVE COVER REMOVAL 7.8
VALVE COVER INSTALLATION 7.8
CAM CHAIN TENSIONER REMOVAL 7.8
CAM CHAIN TENSIONER INSPECTION 7.9
CAM CHAIN TENSIONER INSTALLATION 7.9
CAMSHAFT CHAIN \& SPROCKET REMOVAL 7.10
CAMSHAFT CARRIER REMOVAL 7.11
ROCKER ARM \& SHAFT INSPECTION 7.11
CAMSHAFT INSPECTION 7.12
CYLINDER HEAD REMOVAL 7.12
CYLINDER HEAD DISASSEMBLY 7.13
CYLINDER HEAD INSPECTION 7.14
VALVE SPRING FREE LENGTH INSPECTION 7.14
VALVE INSPECTION 7.15
VALVE INSPECTION 7.16
VALVE GUIDE REMOVAL / INSTALLATION 7.17
VALVE SEAT INSPECTION 7.18
VALVE SEAT RECONDITIONING 7.18
CYLINDER HEAD ASSEMBLY 7.19
CYLINDER HEAD ASSEMBLY 7.20
CYLINDER HEAD / CAMSHAFT INSTALLATION 7.21
CAMSHAFT TIMING - REAR CYLINDER 7.23
CAMSHAFT CHAIN GUIDE INSTALLATION 7.23
CAMSHAFT TIMING - FRONT CYLINDER 7.24
TROUBLESHOOTING, CYLINDER HEAD AND VALVE TRAIN 7.27

GENERAL INFORMATION

IMPORTANT NOTES

- This section covers service of the cylinder heads, camshafts, cam chains and tensioners, cam chain guides and rocker arms. Cam chain tensioners can be serviced with the engine in the frame. Most other cylinder head components require engine removal.
- Refer to Chapter 6 for engine removal and installation.
- If cylinder heads are removed the cylinder base gasket must be replaced also.
- Head and base gasket replacement is recommended if camshaft carrier fasteners are loosened or removed. The 1-piece camshaft carrier design on these engines uses common fasteners for the carrier, the cylinder head, and the cylinder.
- Mark and store all mating parts for correct engine assembly.
- Use Moly Assembly Paste P/N 2871460 or Victory Semi-Synthetic 20W/40 Engine Oil P/N 2872176 to lubricate parts where indicated.
- Handle and store all parts in such a way that they will not be damaged or contaminated.
- Some fasteners have a pre-applied locking agent, and must be replaced if loosened or removed. Always replace fasteners that have a pre-applied locking agent or as directed in this service manual.
- There are some precision machining steps to be performed in this section. If you are not sure of your capabilities in these areas, have a competent machinist perform these operations.
- Valve guide and seat reconditioning should be performed by a technician proficient in cylinder head reconditioning techniques using high quality equipment with grinding stones or precision carbide cutters. Do not attempt cylinder head repair without the proper equipment or experience in cylinder head reconditioning techniques.
- The intake and exhaust valves cannot be re-faced.
- Cleanliness of parts is critical to engine life and accurate parts inspection. Use clean solvent to clean all disassembled parts. Dry parts with compressed air and lubricate before engine inspection and engine assembly.

SPECIAL TOOLS

- Valve Spring Compressor PV-1253 or PV-4019 with adapter PV-43513-A
- Crankshaft Rotation Socket PV-48736
- 8 mm or $5 / 16$ pin punch (Commercially available)
- Engine lock Tool: PV-43502-A

DATA - CYLINDER HEAD

SPECIFICATIONS

CYLINDER HEAD		
	Valve Train	Single Overhead Cam / / valves per cyl 2 Intake valves / 2 Exhaust valves
	Intake Valve Opens At 1 mm Lift	$1^{\circ} \mathrm{BTDC}$
	Intake Valve Closes At 1 mm Lift	$27^{\circ} \mathrm{ABDC}$
	Exhaust Valve Opens At 1 mm Lift	$33^{\circ} \mathrm{BBDC}$
	Exhaust Valve Closes At 1 mm Lift	$-5^{\circ} \mathrm{ATDC}\left(5^{\circ} \mathrm{BTDC}\right)$
	Max Lobe Lift (In / Ex)	$7.26 \mathrm{~mm} / 7.07 \mathrm{~mm}$
	Max Valve Lift (In / Ex)	$10 \mathrm{~mm} / 10 \mathrm{~mm}$

CYLINDER HEAD \& VALVE TRAIN			
Item		Standard	Service Limit
Cam Chain Tensioner	(Hydraulic)	-	-
Cam Shaft	Lobe Height ${ }^{I N}$ EX	$\begin{aligned} & 40.259 \mathrm{~mm}\left(1.5850^{\prime \prime}\right) \\ & 40.060 \mathrm{~mm}\left(1.5772^{\prime \prime}\right) \end{aligned}$	$\begin{aligned} & 40.159 \mathrm{~mm}\left(1.5811^{\circ}\right) \\ & 40.02 \mathrm{~mm}\left(1.5732^{\circ}\right) \end{aligned}$
	Oil Clearance	. 036 mm to 086 mm ($.0014^{\prime \prime}$ to $0034^{\prime \prime}$)	
	Journal O.D. (Small)	$23.96-23.98 \mathrm{~mm}\left(.943-.944^{\prime \prime}\right)$	23.93 mm (.942 ${ }^{\text {\% }}$
	Journal O.D. (Large)	48.464-48.484 mm (1.9080-1.9088")	48.434 mm (1.9068°)
Cylinder Head	Warpage (Distortion)	-	. 10 mm max. ($.004^{\circ}$)
Rocker Arm, Shaft, \& Lifter	Rocker Arm Bore I.D. In/Ex	$12.01-12.03 \mathrm{~mm}\left(.473-.474^{\prime \prime}\right)$	$12.065 \mathrm{~mm}\left(.475^{\circ}\right)$
	Rocker Arm Shaft O.D. In/Ex	11.974 - $11.986 \mathrm{~mm}\left(.471-.472^{\prime \prime}\right)$	$11.944 \mathrm{~mm}\left(.470^{\circ}\right)$
	Rocker Arm to Rocker Arm Shaft Clearance In/Ex	. 024 - . 056 mm (.001-.0022")	. 156 mm (.006 ${ }^{\circ}$
Valve, Valve Guide, Valve Seat	Valve Clearance	Hydraulic/Self Adjusting	-
	Valve Guide Installed Height (See illustration on page 7.19)	12.2-12.8mm (.480-.504")	$41.40 \mathrm{~mm}\left(1.630^{\circ}\right)$
	Valve Stem O.D. In Ex	$\begin{gathered} 6.953-6.973 \mathrm{~mm}\left(.2737-.2745^{\prime \prime}\right) \\ 6.950-6.970 \mathrm{~mm}\left(.273-.274^{\prime \prime}\right) \end{gathered}$	$\begin{aligned} & 6.933 \mathrm{~mm}\left(.2729^{\circ}\right) \\ & 6.928 \mathrm{~mm}\left(.2727^{\circ}\right) \end{aligned}$
	Valve Stem Deflection	-	. 13 mm max. ($.005^{\circ}$)
	Valve Seat Width Intake	1.2 mm (.047")	-
	Valve Seat Width Exhaust	1.75 mm (.068")	-
	Valve Stem Runout	-	. 13 mm max. (0005°)
	Valve Head Radial Runout	-	. 05 mm max. (0002^{\prime})
	Valve Installed Height (See illustration on page 7.19)	INTAKE: $49.31-50.31 \mathrm{~mm}$ $\left(1.941-1.981^{\prime \prime}\right)$ EXHAUST: $48.78-49.78 \mathrm{~mm}$ $\left(1.920-1.960^{\prime \prime}\right)$	-
Valve Spring	Free Length In/Ex	43.36 mm ($1.708^{\prime \prime}$)	41.40 mm (1.630°)
	Intake Valve Maximum Lift	10.0 mm ($\left..393^{\prime \prime}\right)$	-
	Exhaust Valve Maximum Lift	10.0 mm ($.393^{\prime \prime}$)	-
	Spring Installed Height (See illustration on page 7.19)	$\begin{gathered} 34.20-36.20 \mathrm{~mm} \\ \left(1.346-1.425^{\prime}\right) \end{gathered}$	-

TORQUE VALUES AND ASSEMBLY VIEWS

CAM DRIVE \& VALVE COVER

7.4

CAMSHAFT CARRIER / ROCKER ARM

- Tighten only enough to seat carrier. Follow cylinder head torque procedure on page 7.21-7.22.

CYLINDER HEAD

CAMSHAFT TIMING QUICK REFERENCE

Use this page as a reference ONLY if you are familiar with the cam timing procedure.
Refer to Page $\mathbf{7 . 2 3}$ for complete camshaft timing procedure
The illustration below shows final cam timing configuration.
The rear cylinder has been timed and the crankshaft rotated 410 _from rear TDC.

NOTES

Rear camshaft must be timed first. Install rear tensioner (marked "R").

Rotate crankshaft CLOCKWISE (viewed from right side) 410° to FRONT cylinder TDC, then time front camshaft as shown above

III. 1
\longrightarrow

CYLINDER HEAD SERVICE

CAMSHAFT DRIVE COVER

1. Remove cam drive cover.
2. Remove CPS timing wheel.

3. Place shop towel in cavity below cam drive sprocket to prevent objects from falling into crankcase.

4. Rotate engine to front or rear TDC using Crankshaft Rotation Tool PV-48736.
5. Insert $8 \mathrm{~mm}(5 / 16)$ pin at front or rear cylinder TDC to prevent engine rotation. See page 7.7

CAUTION
Do not rotate engine with cam chain tensioner(s) removed.

VALVE COVER REMOVAL

1. Engine removal is required. Refer to Chapter 6.
2. Remove all valve cover screws.
3. Tap cover with a soft faced hammer until loose.
4. Remove cover and gasket.

VALVE COVER INSTALLATION

1. Install gasket with sealant bead UP (toward cover) on clean, dry surfaces.
2. Install all screws and tighten evenly in a cross pattern.

CAM CHAIN TENSIONER REMOVAL

A. CAUTION
Do not rotate engine with tensioner(s) removed.

1. Remove tensioner body (A), sealing washer (B) and damper sleeve (C) (damper on FRONT cylinder only).
2. Inspect tensioner parts.

CAM CHAIN TENSIONER INSPECTION

1. Visually inspect inner plunger (A) for damage, scoring, or burrs.
2. Lubricate inner plunger with engine oil. Move plunger in and out of outer plunger (B) to check for smooth movement without binding.
3. Inspect damper (C) on FRONT tensioner. It should slip over inner plunger with noticeable drag, not a loose fit.
4. Replace tensioner assembly or damper if worn or damaged.

CAM CHAIN TENSIONER INSTALLATION

1. Lubricate all parts with engine oil.
2. Install damper (C) squarely into tensioner bore in cylinder, and push it past the first 4 or 5 threads.

3. Install tensioner body with a new sealing washer.
4. Torque tensioner body to $75 \mathrm{Nm}(55 \mathrm{lb}-\mathrm{ft})$.

CAMSHAFT CHAIN \& SPROCKET REMOVAL

1. Remove engine from frame (Chapter 6).
2. Remove camshaft drive cover and CPS timing wheel (page 7.8).
3. Rotate crankshaft clockwise, past TDC on the compression stroke for front cylinder until bottom sprocket bolt (A) is accessible and remove it.

Crankshaft Rotation Socket: PV-48736

4. Rotate crankshaft clockwise back to front cylinder TDC (camshaft marks aligned with cylinder head surface) and remove top sprocket bolt (B).
5. Remove front cam chain tensioner (page 7.8).
6. Remove lower cam chain guide (below drive sprocket).

7. Remove tensioner blade bolt (C) and guide bolt (D).

8. Remove cam chain and sprocket from camshaft and lower it between tensioner blade and guide, then remove chain from drive sprocket on crankshaft.
9. Lift chain, sprocket, tensioner blade, and guide out of engine.
10. Repeat steps for rear cylinder.

CAMSHAFT CARRIER REMOVAL

NOTE: Keep mated parts together. Mark parts as required to keep them in order.

1. Loosen camshaft carrier / cylinder head nuts (A) $1 / 2$ turn at a time using a cross pattern until loose.

2. Remove carrier nuts and washers, then remove carrier with camshaft and rocker arms as an assembly.

3. Note markings " F " or " R " on drive end of camshafts. Front and Rear cylinder heads use different camshafts.

ROCKER ARM \& SHAFT INSPECTION

1. Remove button head screw (B) and pin (C). Slide camshaft out of carrier.
2. Remove dog point screws (D) and tap rocker shafts out of carrier.
3. Visually inspect rocker arms and rocker arm shafts for wear, scoring, or damage.
4. Inspect all oil passages and clean thoroughly. Use only clean solvent. Do not allow debris to contaminate hydraulic lifters on rocker arms.
5. Rocker arm should fit tightly on shaft without excessive play, and rotate smoothly on shaft without binding.
6. Check roller for radial movement. Roller should have no noticeable radial movement (E).
7. Apply light pressure to roller with a flat piece of bar stock and draw the stock over the roller while observing movement. Roller should not stop, drag, or bind.
8. Measure O.D. of each rocker arm shaft (F) and compare to specification.
9. Measure I.D. of each rocker arm (G).
10. Subtract rocker arm shaft O.D. from its matching rocker arm I.D. to determine clearance. Compare to specification on page 7.3.
11. Replace parts worn beyond service limits.

CAMSHAFT INSPECTION

1. Visually inspect camshaft journal surfaces (A) for scoring or signs of insufficient lubrication. Replace camshaft if heavy scoring or damage is noted.

2. Measure O.D. of each camshaft journal.

3. Inspect height of each cam lobe.

CYLINDER HEAD DISASSEMBLY

CAUTION

Wear eye protection while removing valve springs.
NOTE: Keep mated parts together for assembly. It is important to put cylinder head parts back in the same location.

Valve Spring Compressor: PV-1253 (or PV-4019 with adapter PV-43513-A)

1. Remove the valve keepers (A) using a valve spring compressor tool. Use a pencil magnet to remove valve keepers.

2. Remove upper valve spring retainers (B), springs (C). and valves (E).

3. Remove and discard valve guide seals (D).
4. Clean carbon deposits from combustion chamber.

5. Clean gasket surfaces.

CYLINDER HEAD INSPECTION

1. Visually inspect cylinder head for cracks or damage. Pay close attention to the areas around spark plug and valve seats.
2. Be sure oil passage (A) in cylinder head is unobstructed.

3. Inspect cylinder head for distortion with a straight edge and feeler gauge. Check in different directions and locations on the cylinder head as shown. Compare to specification on page 7.3.

VALVE INSPECTION

Specification are on page 7.3.

1. Place valves on V-blocks as shown and measure valve stem runout.
2. Inspect the valve face for damage from burning, pitting or uneven contact.
3. Place valves in V-block as shown in and inspect valve head radial runout.

4. Insert valves into their original locations in cylinder head.
5. Inspect that each valve moves up and down smoothly without binding in guide.
6. Measure valve stem deflection for each valve to determine if valve or valve guide requires replacement.
A. Raise valve $10 \mathrm{~mm}\left(0.400^{\prime \prime}\right)$ off of seat.
B. Position dial indicator as shown. Measure deflection in two directions perpendicular to each other ($X \& Y$ axis).

7. If valve deflection exceeds service limit measure valve stem.
8. Replace valve and repeat step 6 if valve stem O.D. measures outside standard range. If valve stem deflection exceeds service limits with a new valve installed, valve guide must be replaced.

9. Installation of new valve guides and/or new valves requires valve seat reconditioning. This work should be performed by a technician experienced in cylinder head reconditioning and properly equipped.

VALVE INSPECTION

CONDITION								ILLUSTRATION	POSSIBLE CAUSE Bent valve stem, worn valve guide	CORRECTIVE ACTION Replace valve and reface seat
Uneven seat width		Burnt, pitted, foreign material damage	Replace valve and reface seat							
Damaged valve face				Wear, settling of valve seat						

VALVE GUIDE REMOVAL / INSTALLATION

A caution
 Replacement of valve guides requires an oven, special equipment and experience to do the job correctly. If you are unsure of your ability to do the repair professionally it is best to sublet the labor to a competent machinist. Valve seat reconditioning is required when valve guides are replaced.

1. Support cylinder head and place valve guide remover into valve guide from the combustion chamber side.
2. Drive or press old valve guides out of cylinder head.

3. Apply 90 weight oil to outside of new valve guides.
4. Drive or press new guides from camshaft side of head. Drive or press guides in until circlip (A) seats against head surface (B).

5. Measure valve guide height from spring seat: GUIDE INSTALLED HEIGHT: $12.20-12.80 \mathrm{~mm}$
6. Ream new valve guides to size to obtain specified stem-to-guide clearance. Ream from combustion chamber side of head.

A. caution

Do not tilt the reamer while reaming the guide. Always rotate the reamer in a clockwise direction.
7. Clean cylinder head thoroughly with clean solvent.
8. Inspect and recondition valve seats.

CAUTION
Do not tilt the reamer while reaming the guide. Always rotate the reamer in a clockwise direction.

VALVE SEAT INSPECTION

1. Remove carbon deposits from valves and seats.
2. Inspect valve face for burning, pitting or uneven contact. (Fig. 1)

Valve Seat Centered. No Pitting or Damage. Refer to width specifications.

Fig. 1

NOTE: Valves cannot be ground. If valve face is burned or badly worn, replace the valve.
3. Apply a light coating of machinist's layout fluid or paste to valve face.
4. Install valve into valve guide.
5. Tap valve several times to make a clear impression on the valve face. Do not rotate valve.
6. Remove valve and measure contact area (valve seat width).
7. If valve seat is incorrect, recondition as needed.

VALVE SEAT RECONDITIONING

NOTE: Valve seat reconditioning should be performed by a technician proficient in cylinder head reconditioning techniques using grinding stones. The use of carbide cutters is not recommended. Follow recommendations of the manufacturer of the valve seat reconditioning equipment being used. Do not grind seats more than necessary to provide proper seat width and contact point on valve face.

CYLINDER HEAD ASSEMBLY

$\longrightarrow 7.1$

CYLINDER HEAD ASSEMBLY

Wear eye protection during assembly.

1. Lubricate valve stems with assembly lube.

Moly assembly paste PN: 2871460

2. Install valve in head before installing seal. Hold valve against seat wipe off the portion that extends above the guide.
3. Apply Victory engine oil to valve guide seal and install seal on valve, rotating the seal as you install it
4. Press seal firmly in place on top of guide. Be careful not to dislodge spring from seal.
5. Install valve spring and upper retainer.

CYLINDER HEAD / CAMSHAFT INSTALLATION

NOTE: Base gasket seal is broken upon cylinder head removal and must be replaced at this time. Refer to Chapter 8 for cylinder base gasket replacement.

1. Thoroughly clean cylinder and cylinder head gasket surfaces. Both surfaces and gasket must be free of oil or grease.
IMPORTANT: Gaskets and gasket sealing surfaces
(A) must be free of oil and grease during assembly.
2. Install dowel pins (B).

3. Install a new head gasket.

4. Clean gasket surface on cylinder head and set cylinder head in place on cylinder.
5. Camshaft carriers are marked "F" (FRONT) or "R" (REAR) for installation in their respective cylinder heads (C).

6. Apply Moly Assembly Paste ($\mathrm{P} / \mathrm{N} 2871460$) to lobes and main journals of camshaft.
7. Install camshaft marked "R" into rear cam carrier and camshaft marked " F " into front cam carrier.
8. Be sure alignment pins (D) are in place and fully seated in cylinder head.

9. Turn camshaft until lobes are pointing down (away from cam follower rollers).
10. Inspect each rocker arm and position flat side of hydraulic lifter DOWN.
11. Set camshaft carrier on cylinder head.
12. Apply engine oil to 10 mm studs, nut threads, nut bases and washers.
13. Install washers and nuts on cylinder studs. Tighten finger tight.

14. Slowly and evenly tighten cylinder head nuts following torque sequence in Fig. 2. This allows hydraulic lifters to bleed off pressure. Tighten only enough to seat cam carrier on head.

CAMSHAFT TIMING - REAR CYLINDER

NOTE: Rear cam chain must be installed first.

1. Rotate crankshaft clockwise to TDC (rear cylinder) using crankshaft rotation tool PV-48736.

Crank Rotation Socket PV-48736

2. Hold crankshaft at rear TDC by inserting an 8 mm (or $5 / 16^{\prime \prime}$) locating pin through crankcase hole (A) into crankshaft.

CAMSHAFT CHAIN GUIDE INSTALLATION

1. Place cam chain around rear camshaft sprocket and lower it into chain cavity along with the cam chain guide (B).
2. Seat upper pins of guide in the cylinder head recess, and install cam chain over innermost sprocket on crankshaft.
3. Install rear tensioner blade (C).
4. Torque guide and tensioner blade bolts to specification.

5. Be sure rear camshaft lobes are pointing down. The single mark on cam (D) must be facing UP as shown below.
6. Inspect marks before installing sprocket on camshaft. Mark on sprocket (E) must align with camshaft " R " mark (D). Outer marks (F) must be parallel with valve cover gasket surface.

7. Align camshaft with sprocket hole and install top sprocket bolt finger tight.
8. Apply engine oil to rear cam chain tensioner. Tensioners are not interchangeable due to the length of the tensioner body. The rear tensioner is stamped with a " R ".

9. Install tensioner with a new sealing washer. Torque to 75 Nm (55 lb-ft.).
10. Torque top sprocket bolt to 13.5 Nm ($120 \mathrm{lb}-\mathrm{in}$).

CAMSHAFT TIMING - REAR CYLINDER (cont.)

11. Check carefully to be sure rear cylinder camshaft timing is correct before proceeding:

- Crankshaft secured by pin and locked in the rear cylinder TDC position.
- Rear camshaft lobes facing down ("R" mark on cam aligned with "F/R" mark on sprocket).
- Rear tensioner (stamped "R") is installed and tight.
- Outer marks on camshaft sprocket are parallel to valve cover gasket surface.

12. Remove locating pin from crankshaft and proceed to Step 13.

CAMSHAFT TIMING - FRONT CYLINDER

NOTE: Rear camshaft must be properly timed as shown in Step 6 on page 7.23 before you begin the front cylinder camshaft timing procedure.
13. Rotate crankshaft clockwise 410° to TDC on the front cylinder (exactly one full turn, plus an additional 50°).

14. Rear camshaft double marks are now at the top. Install cam sprocket finger tight.

15. Insert an $8 \mathrm{~mm}\left(5 / 16^{\prime \prime}\right)$ pin through crankcase hole to hold the crankshaft in position at front cylinder TDC. Timing sprocket key (A) will be aligned with pin and front cylinder centerline.

16. Install cam chain guide with front cylinder cam chain and sprocket. Insert pins (B) on upper end of guide into recess in cylinder head.

17. Install front cam chain over crankshaft sprocket.
18. Install front tensioner blade (C).

19. Torque guide and tensioner blade bolts to specification.

20. After pin is installed, torque the rear cam sprocket bolt (installed in Step 14) to 13.5 Nm ($120 \mathrm{lb}-\mathrm{in}$.)
21. Rotate front camshaft slightly so lobes are pointing DOWN.
22. Install sprocket on camshaft with two lines on sprocket (D) parallel to valve cover gasket surface (E).

23. Install top camshaft sprocket bolt finger tight. Do not torque the bolt until front tensioner is installed.
24. Apply engine oil to front cam chain tensioner and damper. Push damper (F) squarely into tensioner bore in cylinder, and push it past the first 4 or 5 threads.

25. Install tensioner with a new sealing washer. Torque to 75 Nm ($55 \mathrm{lb}-\mathrm{ft}$).

26. Torque sprocket bolt to 13.5 Nm ($120 \mathrm{lb}-\mathrm{in}$.).
27. Verify camshaft timing by comparing to III. 1 on page 7.7.
28. Remove TDC locating pin from crankcase and rotate engine clockwise until the remaining front camshaft sprocket bolt hole is accessible.
29. Install sprocket bolt. Torque to 13.5 Nm ($120 \mathrm{lb}-\mathrm{in}$.).

NOTE: Be sure all camshaft sprocket bolts have been installed and properly tightened.

CYLINDER HEAD \& VALVE TRAIN

30. Fill cam carrier area of both front and rear cylinders with Victory engine oil.
31. Rotate crankshaft clockwise approximately three complete revolutions and stop on front cylinder TDC on the compression stroke.
32. Again compare camshaft timing to III. 1 on page 7.7 to verify the timing is correct.
33. Install valve covers (page 7.8).
34. Install bottom cam chain guide. Torque screws to 11.3 $\mathrm{Nm}(100 \mathrm{lb}-\mathrm{in})$.

35. Clean threads of crankshaft and retaining boit with Loctite ${ }^{\oplus}$ Primer N.
36. Apply 2 drops of Loctite* 262 (red) to bolt threads (not required if using a new bolt which has a pre-applied locking agent).
37. Install ignition timing wheel and torque bolt to specification. Allow adequate cure time for Loctite* 262 as directed on container.

TROUBLESHOOTING, CYLINDER HEAD AND VALVE TRAIN

Cylinder head, valve train and piston/cylinder problems are usually detected by an engine compression test. Other problems associated with this area of the engine are external fluid leaks, excessive use of oil or abnormal noises. Troubleshooting involves the use of:

- Leak down (cylinder leakage test) or a compression gauge
- Visual inspection for the source and cause of a fluid leak
- Listening to the engine with a stethoscope to determine source of abnormal noise

The troubleshooting table below lists problems and possible causes, parts affected, and repair suggestions. Thoroughly investigate the problem and possible solution before disassembling the engine to replace suspect parts.

PROBLEM	POSSIBLE CAUSE	PART(s) AFFECTED	REPAIR RECOMMENDED
Hard Starting Won't Start Excessive Lifter Noise	Low Compression	Lifter(s) locked	Replace lifter(s)
		Collapsed Hydraulic Lifter(s). Lifter Extremely Noisy.	Bleed Lifter Noise will typically stop after 1015 minutes of high idle operation. If lifter will not bleed, replace lifter.
		Worn Valve Guide(s)	Replace Valve Guide(s).
		Poor Seating of Valve(s)	Repair or Replace
		Broken Valve Springs	Replace
		Spark Plug Not Seated	Torque to Specifications
		Incorrect Valve Timing	Repair
		Valve Stuck Open	Repair
		Cylinder Head Gasket Leak	Repair
		Slow Starter Motor	See Electrical Section
		Worn Rings, Piston, or Cylinder	See Cylinder/Piston Section
		Ignition Problem	See Ignition Section
		Fuel Problem	See F.I. Section
Electric Starter Straining to Turn Engine Over	High Compression	Excessive carbon build-up in combustion chamber.	Use "Carbon Clean" fuel system additive or disassemble engine to de-carbon combustion chamber.
	Excessive Starter Load	Internal Engine / Drive Components Seized or Binding	Determine Cause of Seizure or Binding
Abnormal Pre-ignition			
Poor Idle Quality	Low Compression	Collapsed Hydraulic Lifter(s). Lifter Extremely Noisy.	Air trapped in lifter. Noise will stop after 10-15 minutes of high idle operation. If air will not bleed, replace lifter.
		Poor Seating of Valve(s)	Repair or Replace
(Continued on next page)			

PROBLEM	POSSIBLE CAUSE	PART(s) AFFECTED	REPAIR RECOMMENDED
Poor Idle Quality	Air leak	Mounting Surfaces, Hoses	Repair Air Leak
	IAC System Fault	Inspect IAC System Hoses	Repair Air Leak or restriction in IAC System
	Fuel Mixture Rich Fuel Mixture Lean	F.I. System F.I. System / Inlet Tract	Refer to Chapter 5 Refer to Chapter 5
	Ignition Misfire	Ignition System	Refer to Chapter 17
	Excessive Oil in Combustion Chamber	Valve guides	Replace
	Excessive Oil in Combustion Chamber	Worn Rings, Cylinder, or Piston	Refer to Chapter 8
		Engine Oil Overfilled	Correct
	Valves Not Opening Fully	Worn Cam Shaft or Rocker Arms	Replace
Engine Noise	Valve Train Area	Collapsed Hydraulic Lifter(s). Lifter Extremely Noisy.	Air trapped in lifter. Noise will stop after 10-15 minutes of high idle operation. If lifter will not bleed, replace lifter.
		Lifter(s) Locked	Replace Lifter(s)
		Broken or Weak Valve Springs	Replace
		Worn Camshaft or Rocker Arm	Replace
		Rocker Arm Roller Bearing Damage	Replace
		Cam Journal Worn or Damaged	Replace
	Piston/Cylinder Area	Worn Pistons and/or Cylinders	Replace
		Excessive Carbon Build-up in Combustion Chamber	Clean
		Worn Piston Pin, Piston Pin Bore and/or Small End of Connecting Rod	Replace
		Worn Piston Rings or Piston Ring Lands.	Replace
Engine Noise	General (May apply to all areas below)	Exhaust leak	Remove exhaust and seal
	Timing Chain Area	Stretched Chain	Replace
		Worn Sprockets	Replace
		Tensioner Not Working	Replace
	Primary Cover Area	Clutch	Refer to Chapter 9
		Flywheel	Refer to Chapter 9
		Starter System	Refer to Chapter 18
		Torque Compensator	Refer to Chapter 9
	Bottom End Area	Main Bearings	Refer to Chapter 10
		Rod Bearings	Refer to Chapter 10
		Loose Side Clearance	Refer to Chapter 10
	Transmission Area	Bearings	Refer to Chapter 10
		Misplaced Circlips	Refer to Chapter 10
		Incorrect Side Clearance	Refer to Chapter 10

7.28

PROBLEM	POSSIBLE CAUSE	PART(s) AFFECTED	REPAIR RECOMMENDED
Poor high speed running	Air Intake Problem		Refer to Chapter 5
	F.I. System Problem		Refer to Chapter 5
	Ignition Problem		Refer to Chapter 17
	Valve Float	Weak Valve Springs	Replace
	Insufficient Valve Travel	Worn Camshaft/Rocker Arms	Replace
	Valves Opening \& Closing at Wrong Time	Incorrect Valve Timing	Correct
Lack of power in all RPM ranges	Low Compression	Worn Piston, Rings, Cylinder	Replace
	Low Compression	Poor Valve Seating	Repair/Replace
	Valves Opening \& Closing at Wrong Time	Valve Timing Incorrect	Correct
	Incorrect Valve Clearance	Hydraulic Lifter Bleeding Down	Replace
	Lifter(s) Locked	Debris in Lifter	Replace lifter(s)
	Collapsed Hydraulic Lifter(s). Lifter Extremely Noisy.	Air Trapped in Lifter. Noise will stop after 10-15 minutes of high idle operation. If lifter will not bleed, replace lifter.	Replace Lifter
	Valve Float	Weak Valve Springs	Replace
	Insufficient Valve Travel	Worn Camshaft/Rocker Arms	Replace
	Ignition Problem		Refer to Chapter 5
	F.I. Problem		Refer to Chapter 5
	Air Intake Problem		Refer to Chapter 5
	Oiling Problem	Oil Overfilled	Correct
	Vacuum Leak	Mounting Surfaces, Hoses	Correct
Using/Burning Oil	Oil in Combustion Chamber	Oil Overfilled	Correct
	Oil Past Rings	Worn or Damaged Piston, Rings, Cylinder	Replace
	Oil Past Valve Guides	Worn Valve Guides	Replace
		Worn Valve Guide Seals	Replace

CYLINDER HEAD \& VALVE TRAIN

NOTES

\qquad

CHAPTER 8 CYLINDER \& PISTON

CYLINDER \& PISTON 8.2
GENERAL 8.2
BASE GASKET SEALING \& CYLINDER STUD TORQUE 8.2
PISTON RING PROFILE AND ORIENTATION 8.2
SPECIFICATIONS 8.3
SPECIAL TOOLS 8.3
CYLINDER REMOVAL 8.4
CYLINDER INSPECTION 8.4
CYLINDER BORE MEASUREMENT 8.4
PISTON TO CYLINDER CLEARANCE WORKSHEET 8.5
CYLINDER WARPAGE MEASUREMENT 8.6
PISTON \& PISTON RING REMOVAL 8.6
PISTON \& PISTON RING INSPECTION 8.6
PISTON PIN / PIN BORE INSPECTION 8.7
CYLINDER STUD REPLACEMENT 8.8
PISTON RING INSTALLATION 8.8
PISTON INSTALLATION 8.9
CYLINDER INSTALLATION 8.10
TROUBLESHOOTING, CYLINDER \& PISTON 8.11

CYLINDER \& PISTON

GENERAL

NOTE: Clean the machine thoroughly before removing engine from frame.

- This section covers service of the cylinder, piston and rings. The engine must be removed from the frame to perform the procedures in this section. Refer to Chapter 6 for engine removal and installation.
- Mark and store all mated parts for assembly. Assemble engine by putting used parts that pass inspection back in the same location.
- Machined and mated surfaces are very delicate. Handle and store all parts in such a way that the mating surfaces will not be damaged.
- Many parts require assembly lubrication. Follow the assembly lubrication procedures carefully.

Moly assembly paste PN: 2871460

- There are many precision measuring steps in this section. If you are not sure of your capabilities in these areas, have a competent machinist perform the precision part inspection operations.
- Cleanliness of parts is critical to engine life and proper parts inspection. Use clean solvent and hot, soapy water to clean parts. Dry with compressed air before inspection and engine assembly. Coat parts with fresh lubricant to prevent oxidation after cleaning.

BASE GASKET SEALING \& CYLINDER STUD TORQUE

PISTON RING PROFILE AND ORIENTATION

8.2

SPECIFICATIONS

CYLINDER \& PISTON

Item		Standard	Service Limit
Cylinder	I.D.	$\begin{gathered} 100.987-101.013 \\ \left(3.9759^{\prime \prime}-3.9769^{\prime \prime}\right) \end{gathered}$	Check taper and out-of-rqund
	Out of Round	Measure 66 mm up from base gasket surface	0.05 mm (.002")
	Taper		0.05 mm (. $0002^{\prime \prime}$)
	Gasket Surface Warpage	\rightarrow	.1mm max. (.0039")
Piston	Piston Mark Direction	Piston orientation is determined by arrow on piston crown. Position BOTH pistons so arrows point to front of engine.	
	Piston O.D. (Nominal) (Measured 10 mm up from bottom of skirt, 90 degrees to pin)	$\begin{gathered} 100.946-100.964 \mathrm{~mm} \\ \left(3.9742-3.9750^{\prime \prime}\right) \end{gathered}$	Replace if piston-tocylinder clearance is excessive with good cylinder
	Piston Pin Hole I.D.	$\begin{gathered} 22.006-22.012 \mathrm{~mm} \\ \left(.8664-.8666^{\prime \prime}\right) \end{gathered}$	$\begin{aligned} & 22.047 \mathrm{~mm} \\ & \left(.8680^{\prime \prime}\right) \end{aligned}$
	Piston Pin O.D.	$\begin{gathered} 21.995-22.000 \mathrm{~mm} \\ \left(.8659-.8661^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 21.96 \mathrm{~mm} \\ \left(.864^{\prime \prime}\right) \end{gathered}$
Piston Ring ClearancesPiston Ring to Ring Land	Piston to Cylinder	$\begin{aligned} & .023-.067 \mathrm{~mm} \\ & \left(.0009-.0026^{\prime \prime}\right) \end{aligned}$	$\begin{aligned} & .15 \mathrm{~mm} \\ & \left(.006^{\prime}\right) \end{aligned}$
	Piston to Piston Pin	$\begin{aligned} & .006-.017 \mathrm{~mm} \\ & \left(.0002-.0007^{\prime \prime}\right) \end{aligned}$	$\begin{aligned} & .035 \mathrm{~mm} \\ & \left(.0014^{\prime \prime}\right) \end{aligned}$
	Ring End Gap - Top (Installed) Ring End Gap - 2nd (Installed) Ring End Gap - 3rd (Installed)	$.15-.40 \mathrm{~mm}$ $\left(.006-.016^{\prime \prime}\right)$ $.33-.53 \mathrm{~mm}$ $\left(.013-.021^{\prime \prime}\right)$ $.15-.55 \mathrm{~mm}$ $\left(.006-.014^{\prime \prime}\right)$	$\begin{gathered} .80 \mathrm{~mm} \\ \left(.031^{\prime \prime}\right) \\ 1.11 \mathrm{~mm} \\ \left(.043^{\prime \prime}\right) \\ .80 \mathrm{~mm} \\ \left(.031^{\prime \prime}\right) \end{gathered}$
	Piston Ring Marks	--	"CTOP" mark must face UP on all rings. page 8.2
	Top Ring (1.2mm ring thickness)	$\begin{gathered} .02-.060 \mathrm{~mm} \\ \left(.0008-.0024^{\prime \prime}\right) \end{gathered}$. 11 mm (.0043")
	2nd Ring (1.2 mm ring thickness)	$\begin{gathered} .02-.060 \mathrm{~mm} \\ \left(.0008-.0024^{\prime \prime}\right) \\ \hline \end{gathered}$. 11 mm (.0043")
	Oil Control Ring	$\begin{gathered} .03-.17 \mathrm{~mm} \\ \left(.001-.0067^{\prime \prime}\right) \end{gathered}$. 26 mm (.010")

SPECIAL TOOLS

Piston ring compressor pliers: PV-43570-1
Piston ring compressor band: PV-43570-2
Cylinder bore gauge: PV-3017
Straightedge, feeler gauge, precision measuring instruments: Refer to Chapter 1 or Commercially available
Protective sleeves for pistons / studs: Commercially available

CYLINDER REMOVAL

1. Remove engine from frame (Chapter 6).
2. Remove cylinder head(s) (Chapter 7).

3. Remove cylinder(s). Support pistons while removing cylinders so they do not fall into the cylinder studs. Use a section of hose (A) to protect piston rings from contact with the studs.
4. Clean gasket surfaces of cylinders thoroughly.

A caution

Careless handling of cylinder, pistons or rings may cause irreparable damage. Do not damage gasket surfaces during cleaning.

CYLINDER INSPECTION

1. Visually inspect cylinder bores for scratches and wear.
2. Inspect gasket surfaces for scratches or other damage that may cause an oil leak.

CYLINDER BORE MEASUREMENT

1. Measure each cylinder bore in 6 places to determine:

- Cylinder Bore Inside Diameter
- Cylinder Taper and Out of Round

2. Use maximum measurement to determine wear.
3. Use the worksheet provided on page 8.5 to record measurements and calculate the clearance.

PISTON TO CYLINDER CLEARANCE WORKSHEET

Front Cylinder	Recorded Measurement	Specification
Top "X		
Middle " X "		
Bottom " $\mathrm{X}^{\text {" }}$		
Top " Y "		
Middle " Y "		
Bottom ' Y "		
Difference between largest " Y " measurement and smallest " Y " measurement	Taper for " Y " axis:	Taper Service Limit: . 05 mm (.002")
Difference between largest " X " measurement and smallest " X " measurement	Taper for " X " axis:	
Largest difference between any " X " axis measurement and " Y " axis measurement	Cylinder Out-of-Round:	Out-of-Round Service Limit: .05 mm (.002")
Piston Skirt Measurement (page 8.6)		
Difference between largest " X " axis measurement and piston measurement	Piston-to-Cylinder Clearance*	Piston-to-Cylinder Clearance Service Limit: $15 \mathrm{~mm}\left(.006^{\prime \prime}\right)$

Rear Cylinder	Recorded Measurement	Specification
Top "X"		Taper Service Limit: . 05 mm (.002")
Middle " X "		
Bottom "X"		
Top " Y "		
Middle ${ }^{\text {V }}$ "		
Bottom " Y "		
Difference between largest " Y " measurement and smallest " Y " measurement	Taper for " Y " axis:	
Difference between largest " X " measurement and smallest " X " measurement	Taper for " X " axis:	
Largest difference between any " X " axis measurement and " Y " axis measurement	Cylinder Out-of-Round:	Out-of-Round Service Limit: .05 mm (.002")
Piston Skirt Measurement (page 8.6)		
Difference between largest " X " axis measurement and piston measurement	Piston-to-Cylinder Clearance*	Piston-to-Cylinder Clearance Service Limit: . 15 mm (.006")

Compare recorded measurement to specifications. If measured value exceeds service limit replace the appropriate part.

NOTE: The cylinders are Ni-SiC plated and cannot be reconditioned by boring or honing. If excessive surface damage, taper or out-of-round exists, the cylinder must be replaced.

- If the piston-to-cylinder clearance exceeds the service limit, measure a new piston and recalculate the clearance. If the piston-to-cylinder clearance exceeds the service limits with a new piston, the cylinder must be replaced.

CYLINDER WARPAGE MEASUREMENT

1. Inspect cylinder for warpage at cylinder head surface and base gasket surface.

2. Place a straight edge diagonally across cylinder mating surfaces in several positions. Attempt to slide a $.05 \mathrm{~mm}\left(.002^{\prime \prime}\right)$ feeler gauge under the straight edge in each position.
3. Replace cylinder is warped beyond the service limit.

PISTON \& PISTON RING REMOVAL

1. Cover crankcase with a clean shop towel to prevent piston clip from falling into the crankcase.
2. Remove the left piston pin circlip.
3. Push piston pin out to left side of engine and remove the piston.

4. Rotate rings in piston groves. Rings should rotate freely in grooves.
5. Clean carbon deposits from piston.
6. Spread rings only wide enough to remove them from piston. Spreading rings too wide will damage them.
7. Clean piston ring grooves. Break or cut a piston ring in half. File or grind one edge square and remove all burrs. Use this piston ring to carefully clean piston ring grooves.

NOTE: A soft wire brush is permissible to clean top of piston. Do not use a wire brush to clean sides of piston or the piston ring groves.

PISTON \& PISTON RING INSPECTION

1. Visually inspect piston for cracks, excessive wear, scoring, etc.
2. Measure piston skirt O.D. $\left(90^{\circ}\right.$ to pin and 10 mm from bottom of piston skirt). Compare to specifications on page 8.3. Replace piston if worn beyond the service limit.
3. Calculate Piston to Cylinder Clearance. Subtract piston O.D. from cylinder bore I.D. and compare to specification listed on page 8.3.
```
Piston to Cylinder Clearance Calculation
            Cylinder I.D.
            Piston O.D.
    = Piston to Cylinder Clearance
```

4. Replace parts that do not meet specification.

NOTE: If piston-to-cylinder clearance exceeds service limit, measure a new piston and re-calculate clearance. If piston-to-cylinder clearance exceeds service limits with a new piston, cylinder must be replaced.
5. Use a piston to push each ring squarely into cylinder bore from bottom (push rings $\mathbf{2 5 - 5 0 \mathrm { mm }}$ into cylinder).

6. Measure installed ring end gap with a feeler gauge and compare to specification listed on page 8.3. If either ring exceeds the service limit, replace ring set.

7. Install rings onto a clean piston. Push rings in until they are flush with piston. Using a feeler gauge (A), measure side clearances for the 1st \& 2nd rings. If any of clearances exceed limit, replace piston and piston rings.

PISTON PIN / PIN BORE INSPECTION

1. Measure piston pin hole I.D. in four locations with a telescoping gauge. Record the smallest.

2. Measure piston pin O.D. at three locations. Record largest measurement.

3. Calculate piston pin-to-piston clearance. Subtract pin O.D. from pin hole I.D.
4. Measure connecting rod small end I.D. at two locations.
5. Calculate connecting rod-to-piston pin clearance by subtracting pin O.D from rod hole I.D.

6. Compare measurements to specifications listed on page 8.3 and replace any worn parts.

CYLINDER STUD REPLACEMENT

1. Use a stud remover to remove 10 mm studs (A) and 8 mm studs (B).

2. Clean threads in cases thoroughly.
3. Apply engine oil to stud threads.
4. Install studs and torque them to specification.

PISTON RING INSTALLATION

A. CAUTION
 Rings may be damaged if expanded more than necessary to install them.

1. Carefully install oil control ring assembly (bottom ring) with "CTOP" mark facing up. The oil control ring consists of a backing spring and one rail component.
2. Install first and second rings with "CTOP" mark facing UP.

3. Make sure that rings rotate freely in grooves.
4. Locate ring end gaps as shown below in relation to arrow on piston crown.

PISTON INSTALLATION

The pistons are marked with an arrow on the crown. Install pistons on connecting rods with arrow (A) facing the FRONT of the engine.

1. Place a clean shop towel over crankcase to prevent foreign material from entering crankcase.
2. Install a new circlip on one side of the piston with end gap facing UP (12:00 position.)

3. Apply assembly lube piston pin and I.D. of connecting rod small end.

Moly assembly paste PN: 2871460

4. Install piston over connecting rod with arrow on piston crown facing FRONT of engine.

5. Push piston pin through rod and piston pin hole until it is stopped by circlip.
6. Install remaining circlip with end gap facing up (12:00 position.)
7. Make sure both piston circlips are seated properly in the groove.

CYLINDER INSTALLATION

NOTE: Be sure all top end parts are ready for assembly. Sealant on crankcase parting line must not be allowed to dry before top end is assembled and torqued.

1. Wash cylinders with clean solvent first, then with hot soapy water.
2. Rinse cylinders with clear water and dry immediately with compressed air. Wipe cylinder bore with a clean white shop towel and engine oil.
3. Apply a light coat of engine oil to piston and rings.
4. Ensure cylinder alignment dowel pins are in place and gasket surfaces are clean and oil-free.
5. Apply a small amount of crankcase sealant to the crankcase parting lines on base gasket surface (A).

6. Install new cylinder base gaskets onto crankcase.

NOTE: Inspect all sealing surfaces carefully for scratches or imperfections. DO NOT allow oil or grease to contact gaskets or sealing surfaces during the assembly process.
7. Place a small amount of engine oil to inside surfaces of a piston ring compressor band.

Piston Ring Compressor Band:PV-43570-2

Piston Ring Compressor Pliers PV-43570-1
8. Install piston ring compressor over rings and compress rings into ring grooves.

A. CAUTION

Be sure compressor band end gap does not align with any ring end gap when compressing the rings.

NOTE: Install cylinders in their original locations.
9. Remove protective covering from crankcase.
10. Carefully install cylinder(s) over piston/ring assembly. Do not force cylinder over piston. Monitor rings carefully. If a piston ring becomes dislodged from the ring compressor; remove cylinder, inspect ring carefully for damage.

11. Remove piston ring compressor when rings are fully captive in cylinder.
12. Slide cylinder down over piston until seated to base gasket and crankcase surface.
13. Repeat for other cylinder.
14. Install cylinder head(s). (Chapter 7).

TROUBLESHOOTING, CYLINDER \& PISTON

PROBLEM	POSSIBLE CAUSE	AFFECTED PART(s)	REPAIR RECOMMENDED
Engine Hard Starting (or) Engine Will Not Start	Low Compression	Lifter(s) Locked	Refer to Chapter 7
		Collapsed Hydraulic Lifter(s). Lifter Extremely Noisy.	Refer to Chapter 7
		Worn Valve Guide(s)	Refer to Chapter 7
		Poor Seating of Valve(s)	Refer to Chapter 7
		Broken Valve Springs	Refer to Chapter 7
Poor High Speed Performance	Valve Float	Weak Valve Springs	Refer to Chapter 7
	Insufficient Valve Travel	Worn Camshaft/Rocker Arms	Refer to Chapter 7
	Valves Opening \& Closing at Wrong Time	Valve Timing Incorrect	Refer to Chapter 7
	Ignition Problem		Refer to Chapter 18
	F.I. System Problem		Refer to Chapter 5
	Air Intake Problem		Refer to Chapter 5
Lack of Power in all RPM Ranges	Incorrect Valve Clearance	Hydraulic Lifter Bleeding Down	Refer to Chapter 7
	Collapsed Hydraulic Lifter(s). Lifter Extremely Noisy.	Air trapped in lifter. Noise will stop after 10-15 minutes of high idle operation. If air will not bleed, replace lifter.	Refer to Chapter 7
	Valve Float	Weak Valve Springs	Refer to Chapter 7
	Valves Opening \& Closing at Wrong Time	Valve Timing Incorrect	Refer to Chapter 7
Engine Hard Starting	Fuel Delivery Problem Ignition Problem	Low Fuel Pressure	Refer to Chapter 5
		No Spark or Weak Spark	Refer to Chapter 17
Engine Hard Starting (or) Engine Will Not Start	Low Compression	Spark Plug Not Seated	Torque Spark Plug
		Incorrect Valve Timing	Refer to Chapter 7
		Valve Stuck Open	Refer to Chapter 7
		Leaking Cylinder Head Gasket	Repair
		Slow Starter Motor	Refer to Chapter 18
		Worn cylinder, Pistons and or Rings	Replace parts that do not meet specification
		Ignition Problem	Refer to Chapter 17
		Fuel Problem	Refer to Chapter 5

TROUBLESHOOTING (Cont.)

PROBLEM	POSSIBLE CAUSE	AFFECTED PART(s)	REPAIR RECOMMENDED
Engine Idies Poorly	Fuel Management Incorrect	Air leaks intake tract	Refer to Chapter 5
		IAC system malfunction, air leak, or restriction	Refer to Chapter 5
	Low Compression	Collapsed Hydraulic Lifter(s). Lifter Extremely Noisy	Refer to Chapter 7
		Lifter(s) Locked	Refer to Chapter 7
		Poor Seating of Valve(s)	Refer to Chapter 7
		Worn Cylinder, Pistons and/ or Rings	Replace parts that do not meet specification
Lack of Power in all RPM Ranges	Insufficient Valve travel	Worn Camshaff/Rocker arms	Refer to Chapter 7
Lack of Power in all RPM Ranges	Low Compression	Worn Piston, Rings, Cylinder	Replace parts that are worn beyond the service limit
Leaks	Improper Assembly	Cylinder, Gaskets, Gasket Surfaces	Perform white powder test to determine leak path.
		Incorrect Fastener Torque	Assemble parts clean and free of oil, grease, or debris. Torque fasteners properly
	Damaged gasket sealing surface(s)	Cylinder/Crankcase	Repair surface or replace part
Noise	Excessive piston to cylinder clearance	Piston / Cylinder	Replace parts that are worn beyond the service limit
	Excessive piston pin clearance (to piston or connecting rod)	Piston / Pin / Connecting Rod	Replace parts that are worn beyond the service limit
	Exhaust Leak	-	Inspect seal of exhaust system at cylinder head

8.12

CHAPTER 9

CLUTCH, PRIMARY, \& SHIFT LINKAGE

GENERAL 9.2
SPECIFICATIONS 9.2
SPECIAL TOOLS 9.2
ASSEMBLY VIEWS \& TORQUE VALUES 9.3
CLUTCH (CABLE) 9.3
SHIFT LINKAGE / FOOTREST - FASTENER TORQUE 9.4
PRIMARY COVER 9.5
SHIFT MECHANISM 9.6
SERVICE PROCEDURES 9.7
CAP PLATE \& CAP PLATE SEAL REMOVAL 9.7
CAP PLATE \& CAP PLATE SEAL INSTALLATION 9.7
CLUTCH PINION SHAFT REMOVAL 9.7
CLUTCH PINION SHAFT BEARING INSPECTION 9.7
CLUTCH PINION SHAFT SEAL REMOVAL \& INSTALLATION 9.8
CLUTCH PINION SHAFT INSTALLATION 9.8
PRIMARY COVER REMOVAL 9.9
SHIFT RATCHET REMOVAL \& INSPECTION 9.10
SHIFT RATCHET INSTALLATION 9.11
SHIFT SHAFT BEARING \& SEAL REPLACEMENT 9.11
PRIMARY COVER INSTALLATION 9.12
LOCKING THE CRANKSHAFT 9.12
CLUTCH SERVICE 9.13
CLUTCH ASSEMBLY VIEW \& TORQUE 9.13
CLUTCH REMOVAL 9.14
CLUTCH DISASSEMBLY 9.15
CLUTCH INSPECTION 9.16
CLUTCH ASSEMBLY 9.18
CLUTCH INSTALLATION 9.20
PRIMARY DRIVE9.21
PRIMARY DRIVE ASSEMBLY VIEW \& TORQUE 9.21
TORQUE COMPENSATOR REMOVAL 9.22
TORQUE COMPENSATOR INSPECTION 9.22
TORQUE COMPENSATOR INSTALLATION 9.23
ROTOR (FLYWHEEL) REMOVAL 9.24
ROTOR (FLYWHEEL) INSTALLATION 9.25
SPLIT GEAR REMOVAL 9.25
SPLIT GEAR INSPECTION 9.25
SPLIT GEAR INSTALLATION 9.26
STARTER DRIVE
STARTER DRIVE REMOVAL 9.279.27
STARTER GEAR INSPECTION 9.27
STARTER CLUTCH REMOVAL / INSPECTION 9.27
PRIMARY DRIVE GEAR
PRIMARY DRIVE GEAR REMOVAL / INSPECTION 9.289.28
STARTER TORQUE LIMIT CLUTCH INSPECTION 9.28
PRIMARY DRIVE GEAR INSTALLATION 9.29
STARTER GEAR / STARTER CLUTCH INSTALLATION 9.30
TROUBLESHOOTING 9.31
\longrightarrow

GENERAL

SERVICE INFORMATION

- Clutch and external transmission shift linkage service can be accomplished with the engine in the frame.
- Internal transmission or internal shifting mechanism service requires engine removal and crankcase separation.
- Oil additives of any kind are not recommended by Victory. Using oil additives or oil of the wrong viscosity can have a detrimental affect on clutch performance, operation, and service life.
- Burnt clutch plates are not an indication of a defect. Burnt clutch plates can indicate that the plate service life has been exceeded, that a problem exists within the clutch system, that the clutch has been used improperly, or that the plates were contaminated by improper oil or additives.
- Victory $20 \mathrm{~W} / 40$ motorcycle oil is recommended for all operating temperatures. If Victory $20 \mathrm{~W} / 40$ oil is not available, a high quality 20W/40 motorcycle oil suitable for use in wet clutch transmissions can be used.
- Lubricate parts during assembly as described in the procedures.
- Corroded or sticking shift linkage pivot points can cause abnormal shifting. Replace any linkage components that are damaged or do not move freely, and lubricate at regular intervals.

SPECIFICATIONS

GENERAL

Item				Specifications
Clutch, Gear Shift, and Linkage	Clutch Type	Wet, Multi-Disk		
	Clutch Operating Mechanism	Cable		
	Torque Compensator	Belleville Spring Loaded Cam Assembly		
	Primary Reduction Ratio	$1.5: 1$		
	Transmission Shift Mechanism	Manually Operated, Spring Centered		
	Gearshift Pattern	$1-\mathrm{N}-2-3-4-5-6$		
	Clutch Spring (Diaphragm Type)	145 lb. (Green Paint Mark)		

SERVICE / MAINTENANCE

CLUTCH / GEARSHIFT / LINKAGE		
Item	Standard	Service Limit
Clutch Lever and Pivots	Lubricate	Refer to Periodic Maintenance Ch2
Clutch Cable Freeplay	$.50-1.50 \mathrm{~mm}\left(.020-.060^{\prime \prime}\right)$	\leftarrow

SPECIAL TOOLS

PRIMARY DRIVE SPECIAL TOOLS

Crankshaft Rotation Socket: PV-48736
Clutch Shaft Holder: PV-45028
Clutch Spring Compressor: PV-45032
Engine Lock Tool: PV-43502-A
Rotor (Flywheel) Puller: PV-43533
$1 / 4$ inch (or 6 mm) and $5 / 16$ (or 8 mm) Pin Punch or Flat Punch: Commercially available
Moly Assembly Paste (P/N 2871460)

9.2

ASSEMBLY VIEWS \& TORQUE VALUES

CLUTCH (CABLE)

CLUTCH, PRIMARY, \& SHIFT LINKAGE

SHIFT LINKAGE / FOOTREST - FASTENER TORQUE

9.4

PRIMARY COVER

A. CAUTION

The rotor contains powerful magnets. Use caution when installing primary cover to avoid personal injury. Refer to page 9.12.
9.5

CLUTCH, PRIMARY, \& SHIFT LINKAGE

SHIFT MECHANISM

9.6

CLUTCH, PRIMARY, \& SHIFT LINKAGE

ЗERVICE PROCEDURES

CAP PLATE \& CAP PLATE SEAL REMOVAL

1. Remove screws (A) and cap plate.
2. Remove three screws (B), cover (C), and O-ring (D).

CAP PLATE \& CAP PLATE SEAL INSTALLATION

1. Install new O-ring (D).
2. Install cover (C).
3. Torque screws (B) to 5.6 Nm (50 in . lb .).
4. Install cap plate with screws (A) and torque to 1.7 Nm (15 in.-lb.).
5. Pull clutch pinion shaft out of primary cover.

9

3. Remove dog point screw (F).

CLUTCH PINION SHAFT BEARING

 INSPECTION1. Apply engine oil to the bearings.
2. Temporarily install pinion shaft into primary cover.
3. Turn shaft by hand. Replace bearings that feel rough. notched, or loose.
9.7

CLUTCH, PRIMARY, \& SHIFT LINKAGE

CLUTCH PINION SHAFT SEAL REMOVAL \& INSTALLATION

1. Remove clutch pinion shaft (page 9.7).

2. Carefully pry seal (A) out of primary cover.
3. Lubricate outer edge of new seal with engine oil and sealing lip with grease.
4. Drive seal into place with a suitable driver (B).

CLUTCH PINION SHAFT INSTALLATION

1. Lubricate and install clutch pinion shaft. Rotate release rack with screwdriver until flat side of rack is UP and rack teeth align with teeth of pinion shaft.
2. Push pinion shaft into cover until seated.

3. Push lightly inward by hand on the clutch arm until it stops. The arm must be positioned at a $15^{\circ} \pm 5^{\circ}$ angle to primary cover parting line when it stops. If angle is not correct, lift arm, rotate as needed, and re-install until angle is correct.
4. Install dog-point screw (C) to $4.5 \mathrm{Nm}(40 \mathrm{lb}-\mathrm{in})$.

PRIMARY COVER REMOVAL

1. Refer to exploded view on page 9.5 .
2. Remove shift linkage and footrest as an assembly (page 9.4). Note dots on arm and shaft must be aligned for assembly

Pull Rod / Cable Removal From Release Arm

3. Protect finish of pinion shaft release arm and use an adjustable wrench to rotate arm toward primary cover.
4. Remove pull rod or cable end from release arm. Do not bend pull rod or kink cable.

5. Remove cap plate and cap plate seal (page 9.7).
6. Remove clutch pinion shaft (page 9.7).

NOTE: Pinion shaft removal is not required for primary cover removal unless pinion shaft service is required.
7. Drain engine oil into suitable container.

NOTE: Primary cover can be removed without draining engine oil by safely leaning and supporting motorcycle at an angle to the right.
8. Remove primary cover screws.

NOTE: Note position of shorter screw (A) in the hole just to the rear of the shift shaft.

9. Tap cover with a soft face hammer to loosen.
10. Pull primary cover outward evenly at front and rear of cover to remove.

SHIFT RATCHET REMOVAL \& INSPECTION

1. Shift transmission into neutral.

2. Remove primary cover (page 9.9).
3. Pull straight outward on shaft to remove the shift ratchet assembly (A) with return spring (B) attached.
4. Inspect shift shaft adapter (C) on crankcase for wear and verify it is tight.
5. Inspect shift shaft return spring for cracks or loss of tension. The spring should have enough tension to keep the shift shaft centered.

6. Inspect shift shaft for wear or damage.
7. Inspect compression spring (D) for tension. The spring should apply enough tension on the shift ratchet mechanism to keep it extended.
8. Inspect fit of rivet (E) on shift ratchet assembly. It should allow for free movement, but not be excessively loose.
9. Inspect fit of locating retainer clip (F) and all parts of ratchet for cracks or damage.

10. Inspect cases around shift shaft adapter for cracks.
11. Use a pin punch to hold detent roller away and remove shift star (G) from shift drum.
12. Inspect shift star.
13. Inspect detent roller arm (H) for wear or damage.
14. Inspect spring (I) for proper tension.
15. Remove detent roller arm and spring.

SHIFT RATCHET INSTALLATION

Refer to Shift Mechanism Assembly View on page 9.6.

1. Apply Loctite 242 (Blue) to clean threads of detent roller screw. Install detent roller arm (A) with spring and torque screw to $9.6 \mathrm{Nm}(85 \mathrm{lb}-\mathrm{in})$.
2. Be sure balance gear oiler pin (B) is tight in crankcase.
3. Torque shift shaft adapter (C) and apply a small amount of lithium grease to shift shaft bore.
4. Clean threads of shift star screw with Loctite Primer N and apply a few drops of Loctite 242 (Blue) to threads.
5. Hold detent roller away with a pin punch and install shift star. Torque screw to $9.6 \mathrm{Nm}(85 \mathrm{lb}-\mathrm{in})$.

6. Install shift ratchet into shift shaft adapter with centering spring (D) attached. Slide ratchet fork (E) away from shift star and hold. Center the legs of ratchet return spring on pin and push ratchet in until seated.

7. Release ratchet fork to engage ratchet with shift star.
8. Install clutch (page 9.20).

SHIFT SHAFT BEARING \& SEAL REPLACEMENT

1. Remove primary cover (page 9.9). Carefully pry shift shaft seal from cover.

2. Using a suitable arbor and arbor press, press bearing from inside of cover to outside.
3. Apply assembly lube to inner \& outer surfaces of new bearing.

Moly assembly paste PN: 2871460
4. Press bearing into place with numbered side out until fully seated.

5. Apply a small amount of grease to lip of seal and apply engine oil to outside of seal.
6. Drive seal into place with a seal driver slightly smaller than the O.D. of seal.
7. Install primary cover (page 9.12).
8. After installing primary cover, be sure shift shaft returns freely to the centered position after rotating up or down.

PRIMARY COVER INSTALLATION

1. Clean gasket surfaces of crankcases and cover.
2. Verify alignment pins (A) are in position and pinion shaft is removed from cover.
3. Place new primary cover gasket on crankcase with sealant bead (B) out (toward cover). Loctite ${ }^{\text {© }} 534$ can be used to hold gasket in place.

4. Install cover keeping it parallel to crankcase to prevent binding on shift shaft.

CAUTION

The rotor magnets have considerable energy. DO NOT place fingers between primary cover gasket surface and other parts or they may be pinched.
5. Install primary cover screws.

NOTE: Short screw (C) is placed in hole just behind shift shaft.

6. Torque screws in two steps to 13 Nm ($115 \mathrm{lb}-\mathrm{in}$). Repeat torque on all screws.
7. Install pinion shaft (page 9.8).
8. Install cap plate with seal (page 9.7).
9. Lubricate clutch lever pivots and cable ends (page 2.12).
10. Install clutch cable on pinion shaft arm.
11. Install shift linkage arm on shift shaft with dots aligned and install left footrest assembly. Torque linkage arm pinch bolt to 9.5 Nm ($84 \mathrm{lb}-\mathrm{in}$).

12. Check engine oil and fill to proper level (Chapter 2).

LOCKING THE CRANKSHAFT

Service procedures described in this chapter require locking of the gears or shafts to prevent rotation while removing or installing the retaining nuts. Engine Lock Tool PV-43502-A is described in most procedures; however, in some cases it is preferable to lock the engine crankshaft (shown below) or the clutch shaft using tool PV-45028.

- Remove RH lower engine cover.
- Remove crankshaft position timing wheel.
- Rotate engine to front or rear cylinder TDC with tool PV-48736 until 8 mm ($5 / 16$ inch) pin punch can be inserted into the crankshaft TDC location hole.

CLUTCH SERVICE

CLUTCH ASSEMBLY VIEW \& TORQUE

 Clip. External
 Clip. External
 Asm., Gear/Basket
 Asm., Gear/Basket
 Bearing, Ball
 Bearing, Ball
 Snap Ring. Internal
 Snap Ring. Internal
 Hub, Clutch
 Hub, Clutch
 Seat, Judder Spring
 Seat, Judder Spring
 Spring, Diaphragm, Judder
 Spring, Diaphragm, Judder
 Plate, Friction, Judder (1)
 Plate, Friction, Judder (1)
 Plate, Separator (9)
 Plate, Separator (9)
 Plate, Friction (8)
 Plate, Friction (8)
 10A Plate, Friction, Special Outer (1)
 10A Plate, Friction, Special Outer (1)
 11. Plate, Pressure
 11. Plate, Pressure
 Spring, Clutch, Diaphragm
 Spring, Clutch, Diaphragm
 Seat. Snap Fing
 Seat. Snap Fing
 Snap Ring. Intemal
 Snap Ring. Intemal
 Asm. Clutch
 Asm. Clutch
 6. Washer
 6. Washer
 17. Nut, 20\times1.5
 17. Nut, 20\times1.5
 Asm, Rack Insert (Incl 22,23,24)
 Asm, Rack Insert (Incl 22,23,24)
 19. Circlip, Internal
 19. Circlip, Internal
 20. Ring, Retaining, External
 20. Ring, Retaining, External
 21. Insert, Pressure Plate
 21. Insert, Pressure Plate
 22. Bearing, Ball
 22. Bearing, Ball
 23. Snap Ring, Internal
 23. Snap Ring, Internal
 24. Rack, Clutch
 24. Rack, Clutch

CLUTCH, PRIMARY, \& SHIFT LINKAGE

CLUTCH REMOVAL

1. Remove primary cover (page 9.9).
2. Using an internal snap ring pliers, remove clutch rack.

3. Install engine lock tool (A) between crankcase and split gear as shown below to prevent gear rotation and loosen clutch nut (rotor / starter gear removal is not required).
NOTE: An alternate method of preventing gear rotation is to lock the crankshaft as shown on page 9.12.

Special tool: Engine lock tool PV-43502-A

[^1]4. Remove clutch nut, lock washer, and flat washer. Discard lock washer and nut.

5. Remove clutch assembly from clutch shaft.
6. Remove friction washer (B) from clutch shaft and discard. A new washer must be installed upon assembly.

CLUTCH DISASSEMBLY

Special tool: Clutch spring compressor PV-45032

A caution
 Clutch is under spring pressure. WEAR EYE PROTECTION.

1. Install clutch spring compressor threaded rod and secure it with the snap ring (A).

2. Install compressor bridge, bearing, and T-handle over threaded post.
3. Compress clutch spring and remove snap ring.

4. Remove retaining ring seat (B) (stepped washer).

5. Remove tool from clutch.
6. Refer to exploded view on page 9.13.
7. Disassemble clutch, laying parts out in order of removal and keep them in order.
8. Remove clutch spring (C) and pressure plate (D)
9. Remove (1) special friction plate (E) that is placed outermost against pressure plate.

10. The outermost plate can be identified by the wider pads on the friction material.

11. Remove (9) identical steel plates that separate the (8) identical friction plates.
12. Remove judder friction plate, judder spring, and judder spring seat.
13. Note difference between judder plate (F) and next friction plate (G). The judder plate is the innermost friction plate on the clutch hub.

CLUTCH INSPECTION

1. Clean clutch plates, inner hub, and outer basket.

Clutch Basket

2. Inspect clutch gear teeth (A) for wear, cracks or damage.
3. Inspect inside surfaces (B) of basket for cracks or wear (grooves) from clutch plates.

4. Replace parts that fail inspection
5. Rotate hub bearing. Check for smooth rotation. Inner race should no detectable radial movement (C).
6. Lubricate bearing with engine oil.

Clutch Hub

7. Inspect spline teeth (D) for wear, cracks or damage.

8. Inspect surface of steel plate guides (E) on outer edge of hub for wear, grooves, or damage. Check all posts (F) for cracks or damage. Check the snap ring groove for wear.
9. Visually inspect friction and steel plates for wear or damage on both surfaces. Replace plates as a set if any plate is worn or damaged.

CLUTCH, PRIMARY, \& SHIFT LINKAGE

10. Replace steel plates if grooved, distorted or discolored. Inspect plates for distortion by placing each plate on a precision flat surface. Insert a feeler gauge between plate and flat surface in several places.

Clutch Steel Plate Warp Service Limit: .20mm (.008in)
11. Measure thickness of friction plates in several places. Thickness should be the same at each place. Replace plates that fail inspection.

Friction Plate Thickness Minimum): $\mathbf{2 . 0 0 ~ m m ~ (. 0 7 8 ~ i n) ~}$

Clutch Pressure Plate

12. Inspect pressure plate for cracks, scoring, or wear on friction surface.
13. Inspect lifter retaining ring groove (H) for cracks or chips. Replace pressure plate if it fails inspection.

Diaphragm Spring

14. Inspect clutch diaphragm spring (I) for cracks or distortion.
15. Inspect inner and outer edges of spring carefully for unusual wear or damage. Outer edge should lay flat against a surface plate and inner tabs should be even in height (J).

Clutch Release Rack and Bearing

16. Inspect clutch rack for broken or damaged teeth.
17. Remove retaining ring and disassemble.
18. Inspect lifter bearing visually for any signs or wear or discoloration. Rotate bearing inner race with your finger and check for smooth movement and no play.

CLUTCH, PRIMARY, \& SHIFT LINKAGE

19. If bearing (K) fails inspection, remove it from housing (L) using an arbor press. Support housing evenly in areas (M) during bearing removal.

20. Press new bearing into housing until seated and past snap ring groove (N). Press only on outer race of bearing.
21. Install rack into bearing as shown.
22. Install retaining ring (O) with sharp (machined) edge away from bearing (toward rack teeth). Be sure it is fully seated.

CLUTCH ASSEMBLY

1. Refer to exploded views on page 9.13. Apply engine oil to judder spring seat (A) and spring (B).

2. Install judder spring seat (flat ring), then judder spring.

NOTE: Judder spring must be installed with concave side facing UP (toward outside of clutch). The tallest edge of spring will be outermost.
3. Apply engine oil to judder friction plate and install.

NOTE: This plate has a thinner profile (C) than the rest of the friction plates.

9.18

NOTE: Feel the edge of steel plates and friction plates with your finger. One side of plate is machined at the edges and the other side is a rolled edge (rounded). Install steel plates with machined edge facing UP. Install friction plates with rolled edge facing UP.

4. Place an oiled steel plate into clutch basket with machined edge UP.

NOTE: If friction plates are new, soak them in clean engine oil for a few minutes before installing.
5. Continue stacking oiled clutch plates into clutch basket alternating friction and steel plates until all are installed, ending with the special friction plate.

NOTE: Be sure to install special friction plate last (against pressure plate). As noted in Disassembly, the friction material on this plate has wider pads than the other (8) common friction plates. See illustrations on page 9.13 and photo below.
6. Install clutch pressure plate on top of clutch packing.

7. Install clutch diaphragm spring (D) with concave side down on top of pressure plate.
8. Place retaining ring seat (E) and retaining ring over clutch assembly before installing clutch spring compressor tool. Flange on inner edge of seat faces UP as shown.

CAUTION

Tool will be under spring pressure. WEAR EYE PROTECTION.
9. Install compressor tool and compress spring so ring seat can be positioned and retaining ring installed.

Special Tool: Clutch Spring Compressor PV-45032

10. Install retaining ring with machined (sharp) edge up. Position retaining ring so one end of retainer is located on one of the posts (F).

11. After retaining ring is installed, slowly release pressure from tool and guide flange into position under the retaining ring.
12. Remove spring compressor tool. Inspect retaining ring to be sure it is fully expanded and seated in groove.
9.19

CLUTCH, PRIMARY, \& SHIFT LINKAGE

CLUTCH INSTALLATION

1. Install a NEW friction washer (A) on clutch shaft. DO NOT re-use this washer.
2. Pry back split gear (B) to align teeth and push clutch assembly onto clutch shaft until gear is fully engaged with torque compensator gear.
3. Clean clutch shaft threads with Loctite ${ }^{\text {TM }}$ Primer N to remove all grease, oil, or old locking agent.
4. Install washer (C), a new lock washer (D) and a new nut (E).
5. Install lock tool under split gear or lock crankshaft as shown on page 9.12. Torque nut to specification.

Engine lock tool PV-43502-A

6. Install clutch lifter assembly (F) and retaining ring (G). Be sure retaining ring is seated in groove.
7. Install primary cover (page 9.12).
8. Check engine oil and fill to proper level.

PRIMARY DRIVE ASSEMBLY VIEW \& TORQUE

IMPORTANT: Torque compensator (items 6-13) must be assembled with engine upright to prevent dislocation of washer (item 6) from sleeve (item 8) when items 9-13 are installed. See procedure page 9.23.

1. Gear, Split, 37T
2. Spring, Split Gear (4)
3. Gear, Split, Backlash
4. Retaining Ring
5. Assembly, Split Gear (incl. items 1-4)
6. Thrust Washer, Compensator
7. Compensator Gear
8. Compensator Sleeve
9. Compensator Slider
10. Compensator Spring, Belleville (4)
11. Compensator Retainer
12. Lock Washer, Split
13. Nut, Special (Replace if removed or loosened)
14. Bolt, Oil Jet
15. Washer, Flat
16. Rotor
17. Key, Rotor
18. Retaining Ring
19. Flat Washer
20. Starter Drive Gear, Crankshaft
21. Starter Drive Clutch
22. Screw, Special (6) (Replace if removed or loosened)
23. Crankshaft Gear (Primary Drive Gear)
24. Shaft, Idler Gear
25. Idler Gear, Starter (See NOTE: \#25 in illustration above)
26. Torque Limit Clutch, Starter
27. Bearing
28. O-Ring
29. Cover, Limit Clutch
30. Screw, Socket Head, M6 $\times 15$

TORQUE COMPENSATOR REMOVAL

See Torque Compensator Assembly View (page 9.21). If split gear removal is required, see page 9.25 after compensator is removed.

1. Remove primary cover (page 9.9).
2. Lock the engine to prevent rotation with the lock tool or lock the crankshaft as described on page 9.12.

Engine lock tool PV-43502-A

3. Remove torque compensator nut and lock washer and discard.
4. Remove retainer plate and Belleville springs.

Note orientation of washers (concave edges of washers face each other) for installation.

5. Remove outer ramp.

6. Remove gear (A) with compensator sleeve (B), and washer (C). The washer must be positioned correctly upon assembly. See assembly procedure page 9.23 .

TORQUE COMPENSATOR INSPECTION

1. Inspect all parts for excessive galling or damage.

NOTE: Some polishing will be evident between the compensator gear and the compensator slider and is a normal condition. Replace assembly if ramps are worn.
2. Measure free length of torque compensator spring stack.

Specification: Compensator Spring Stack Height Standard:
$17.68-18.08 \mathrm{~mm}$
(.696-. 712 inch)

Service Limit: 16 mm
(. 630 inch)

CLUTCH, PRIMARY, \& SHIFT LINKAGE

TORQUE COMPENSATOR INSTALLATION

NOTE: Engine must be upright for this procedure. It is very important that washer (A) does not fall off the sleeve (B) during assembly. Perform all steps to ensure washer is in place before installing springs and retainer plate.

III. 1

1. Push split gear (B) fully inward to be sure it is seated.
2. Place sleeve (C) on balance shaft and hold it in against split gear.
3. Pull balance shaft (D) fully outward.
4. Measure and record the distance from sleeve to end of shaft.

5. Remove sleeve from balance shaft.
6. Apply Moly Assembly Paste 2871460 shaft splines, sleeve, back side of gear, and washer.
Moly Assembly Paste: 2871460
7. Install sleeve (E) into gear and place washer (F) over the protruding end of the sleeve on back side of gear.

8. Slide assembly onto balance shaft and seat it firmly against split gear, using care not to dislodge the washer from the sleeve.
9. Grease the peaks and valleys gear, sliding ramp, and splines of sleeve.

10. Install sliding ramp.

11. Repeat measurement, pushing sleeve inward and pulling shaft outward. Measurement should be the same as recorded in Step 4. Disassemble and inspect washer placement if measurement is not the same.
12. Grease edges of springs and retainer plate. Illustration below shows correctly assembled springs, with concave edge facing each other. The assembled sets of two spring washers are stacked back to back.

13. Install retainer plate and Belleville spring assembly, pushing it onto splines as far as possible.
14. Clean balance shaft threads thoroughly to remove all old locking agent, oil, or grease.
15. Install a new lock washer, and nut. The nut has a preapplied locking agent.

16. Hold shaft by inserting lock tool or pin the crankshaft.
17. Torque nut to 170 Nm ($125 \mathrm{lb}-\mathrm{ft}$.).

Engine Lock Tool PV-43502-A

TORQUE: Compensator Nut 170 Nm ($125 \mathrm{lb}-\mathrm{ft}$)

18. Install primary cover (refer to page 9.12).
19. Fill engine oil to proper level.

ROTOR (FLYWHEEL) REMOVAL

1. Remove primary cover (page 9.9) and rotor retaining bolt (counterclockwise). Lock the engine to prevent rotation with the lock tool (insert at point A) or lock the crankshaft as described on page 9.12.

Engine lock tool PV-43502-A

CAUTION

Use caution when removing nut and keep hands and body clear in case tool slips off gear.
2. Remove lock tool.
3. Cover crankcase cavity under rotor with a clean shop towel to prevent parts from falling into case.

4. Install puller (B). Install lock tool (C) on bottom of gear and rotate puller clockwise to remove rotor.

Rotor Puller PV-43533

5. Remove rotor and key.

CLUTCH, PRIMARY, \& SHIFT LINKAGE

ROTOR (FLYWHEEL) INSTALLATION

1. Clean taper of rotor and crankshaft thoroughly.
2. Install key in key way on crankshaft.
3. Align rotor key-way and install rotor on crankshaft.

Engine Lock Tool PV-43502-A

4. Position the lock tool as for rotor removal (C, previous photo) or lock the crankshaft as described on page 9.12.
5. Install washer $\&$ bolt. Torque to $102 \mathrm{Nm}(\mathbf{7 5} \mathrm{lb}-\mathrm{ft})$.

SPLIT GEAR REMOVAL

1. Remove primary cover (page 9.9).
2. Remove rotor (page 9.24).
3. Remove clutch assembly (page 9.14).
4. Remove torque compensator (page 9.22).
5. Remove starter gear retaining ring (A) with a flat-billed external ring pliers. Remove any burrs from crankshaft ring groove before removing starter gear, or starter gear bushing may be damaged when gear is removed.

6. Remove torque compensator (page 9.22).
7. Temporarily install rotor to rotate engine until key is pointing up, and timing marks on split gear are aligned with mark on crankshaft gear.

$$
x
$$

8. Insert a $1 / 4^{\prime \prime}$ pin punch in gear alignment hole (B) to relieve spring pressure on gear teeth.

9. Pull split gear off balancer shaft.

SPLIT GEAR INSPECTION

1. Remove retaining ring (C) from split gear hub and separate outer gear from inner gear. Visually inspect contact surfaces of gears, springs, spring channels, and gear teeth.

NOTE: Some normal polishing may be evident in the spring channels of gears. Replace the gear assembly if wear is evident.
2. After assembly, outer gear must rotate and return freely without binding on inner gear.
)

SPLIT GEAR INSTALLATION

1. Rotate balance shaft until "boss" spline (D) (double wide spline) is at 12:00 o'clock position.

2. Apply grease to balance shaft and back of split gear assembly.
3. Line up teeth of split gear assembly with $1 / 4^{\prime \prime}$ straight pin in hole (E). Leave pin in place.
4. Do not allow pin to protrude out the back of the split gear assembly.

5. Place split gear on balance shaft with alignment dots at the 9:00 o'clock position.
6. Align "boss" splines of balance shaft and split gear while engaging crankshaft gear with split gear. Dot on crankshaft gear (F) must be between the 2 dots on balance gear (G).

STARTER DRIVE

STARTER DRIVE REMOVAL

NOTE: The starter gear and primary drive (crankshaft) gear must be removed before the starter idler gear or starter torque limiter clutch and shaft can be removed from crankcase.

1. Remove primary cover (page 9.9).
2. Remove rotor (page 9.24).

Rotor Puller PV-43534

3. Place a shop towel in the crankcase cavity.
4. Remove starter gear retaining ring (A) with a flat- billed external ring pliers. Remove any burrs from crankshaft ring groove before removing starter gear, or starter gear bushing may be damaged when gear is removed.

5. Remove flat washer and gear.

STARTER GEAR INSPECTION

1. Inspect gear teeth for chips, cracks or excessive wear.

2. Inspect bushing (B) for excessive wear and scoring.
3. Inspect one-way clutch hub (C) for wear, scoring or rough surface.
4. Measure I.D. of bushing and O.D. of one-way clutch hub and compare to specification.
5. Replace gear if wear or damage is evident.

STARTER CLUTCH REMOVAL / INSPECTION

1. Remove one-way clutch from primary drive gear.
2. Note direction of one-way clutch with flanged side (D) inward (toward engine) for reassembly.

3. Inspect cage for cracks. Check band springs for tension and proper function.
4. Inspect clutch lobes for wear, galling, or rough surface.
5. See "STARTER GEAR I STARTER CLUTCH INSTALLATION" on page 9.30

PRIMARY DRIVE GEAR

PRIMARY DRIVE GEAR REMOVAL / INSPECTION

1. Install engine lock tool in position (A) to hold crankshaft gear stationary while removing bolts.
2. Remove primary gear screws. NOTE: Install new screws with pre-applied locking agent upon assembly.
3. Use a primary cover screw to pull idler gear shaft (B).

IMPORTANTI Position idler gear as shown for primary gear removal. If removed from the case, place idier gear back in this position BEFORE installing primary gear.
4. Pull primary drive gear off crankshaft.
5. Remove idler gear from crankcase.
6. Inspect clutch hub surface (C) inside primary drive gear for wear, scoring, nicks, or rough surface.

7. Inspect gear teeth on idler and primary drive gear for chips, cracks or excessive wear.
8. Remove starter drive cover.
9. Pull torque limiter clutch shaft out through cover opening with washer.

NOTE: Stepped side of washer faces out (toward gear) and flat side of washer is against limiter clutch (inset).
10. Remove torque limit clutch.

STARTER TORQUE LIMIT CLUTCH INSPECTION

1. Mount torque limit clutch in a soft jawed vise across entire gear face (D). Clamp only tight enough to prevent gear rotation.

2. Install shaft with spacer (E).
3. Use a 19 mm 12 point socket on gear (F).
4. Read torque at point of clutch slip.

Limit Clutch Break-Away Torque:

Standard: 46-61 Nm (35-45 lb.-ft.)
Service Limit: 40 Nm ($\mathbf{3 0} \mathrm{lb} .-\mathrm{ft}$)

PRIMARY DRIVE GEAR INSTALLATION

1. Clean mating surfaces of crankshaft and gear.
2. Clean screw threads in crankshaft to remove all locking agent, oil, and grease with Loctite ${ }^{\text {TM }}$ Primer N and dry with low pressure air.
NOTE: Starter torque limit clutch (A) and idler gear (B) MUST be placed in the case before the primary drive gear is installed.

3. Place idler gear in crankcase but do not install shaft.
4. Temporarily install rotor to rotate engine until key is pointing UP. Remove rotor.
5. Install primary gear on crankshaft with dot on gear at the $3: 00$ position (90 degrees to the rear).

6. Engage teeth of primary gear and split gear, with dot on primary gear between two dots on split gear.
7. Place engine lock tool between bottom of inner split gear and crankcase.
8. Install drive gear. If split gear is installed, rotate drive gear clockwise against spring pressure until split gear teeth align. Push gear in and rotate until pin on crankshaft aligns with hole on the back of drive gear. Primary and split gear teeth will be flush if fully seated.

9. Install new primary drive gear screws. These screws have a pre-applied locking agent. Always replace these screws if loosened or removed.
10. Install screws and torque in 2 steps following a star screws.
11. Install idler gear and shaft (C).

12. Install starter clutch and gear (page 9.30).

STARTER GEAR / STARTER CLUTCH INSTALLATION

1. Install one-way clutch with raised edge (A) inward (toward primary gear).

2. Install starter gear (B). When properly installed, the starter gear should rotate smoothly in a clockwise direction and lock to the primary gear when you attempt to rotate it counterclockwise.

3. Install washer (C).

TROUBLESHOOTING

TROUBLESHOOTING

PROBLEM	POSSIBLE CAUSE	PART(s) AFFECTED	REPAIR RECOMMENDED
Clutch Lever Pulls Excessively Hard	Clutch lever pivot, bushings, ferrules need lubrication	Clutch lever pivot points	Lubricate
	Drive plates catching on primary driven gear basket	Clutch primary driven gear/ clutch plates	Replace necessary parts
	Clutch lifter plate bearing damage	Clutch plate bearing lifter	Replace
	Damaged clutch lifter mechanism	Clutch release mechanism	Repair as necessary
Clutch Slips	Clutch spring weak	Clutch spring	Replace
	Clutch spring snap ring loose or broken	Clutch spring snap ring	Repair or replace as necessary
	Pressure plate worn, warped or distorted	Pressure plate	Replace
	Clutch plate(s) worn, warped or distorted	Driven plates or drive plates	Replace
	Clutch lifter mechanism sticking	Clutch lifter mechanism	Repair
	Engine oil level low	Oil level	Correct
	Oil additives present in oil or used previously	Oil quality	Replace oil \& filter (clutch plates may need to be replaced)
Dragging Clutch (doesn't disengage completely, creeping, hard to find Neutral)	Clutch lever, pivot, cable, or lifter arm sticking	Lever, pivots, bushings, bearings, cable	Inspect
	Oil additives present in oil or used previously	Oil quality	Replace oil \& filter (clutch plates may need to be replaced)
	Oll level too high	Oil level	Correct
	Oil viscosity too high	Oil quality	Replace oil \& filter
	Pressure plate worn, warped or distorted	Pressure Plate	Replace
	Clutch plate(s) worn, warped or distorted	Driven plates and/or drive plates	Replace
	Weak clutch spring	Clutch springs	Replace all

PROBLEM	POSSIBLE CAUSE	PART(s) AFFECTED	REPAIR RECOMMENDED
Transmission Will Not Shift	Broken shift drum	Shift drum	Replace shift drum
	Bent shift forks	Shift fork	Replace shift forks
	Worn shift drum	Shift drum	Replace shift drum
	Broken gears	Transmission gears	Replace broken gear(s)
	Damaged/broken bearings	Transmission, shift cam bearings	Replace bearings that fail inspection
	Worn gear shift pawl ratchet mechanism	Shift pawl mechanism	Replace parts that fail inspection
	Broken or dislodged shift shaft return spring	Shift shaft return spring	Repair or replace
	Roller detent arm stuck	Roller detent arm	Repair or replace parts
	Bent shift shaft (internal)	Shift shaft	Repair or replace
	External shift linkage binding or damaged	External shift linkage	Repair or replace
	Bent or distorted shift forks	Shift fork	Replace
	Bent or distorted shift fork rails	Shift fork rail	Replace
	Broken transmission components	Transmission components	Repair or replace
Transmission Hard to Shift	Improper clutch operation	Clutch	Inspect, repair
	Incorrect oil viscosity	Oil quality	Replace engine oil
	Incorrect clutch cable adjustment	-	Adjust
	Shift shaft damaged	Shift shaft components	Repair or replace
	Sticking pivot point, bent external shift linkage	External shift linkage	Repair or replace
	Bent or distorted shift forks	Shift forks	Replace
	Damaged shift drum grooves	Shift drum	Repair or replace
	Shift detent plunger stuck	Shift detent plunger	Repair or replace
	Bent/binding shift fork rails	Shift fork rails	Repair or replace
Transmission Jumps Out of Gear	Broken / loose stop pin	Shift stop pin	Replace
	Worn shift drum or shift drum ratchet	Shift drum or shift linkage	Replace
	Broken shift return spring	Shift return spring	Replace
	Damaged shift drum grooves	Shift drum	Replace
	Bent or worn shift forks	Shift forks	Replace
	Bent/binding shift fork rails	Shift fork rails	Replace
	Worn engagement dogs on transmission gears	Transmission gears	Replace
Transmission Noise	Drive belt tension incorrect	Drive belt	Adjust or replace
	Clutch plates bind or drag when clutch is disengaged	Clutch plates / hubs	Adjust / repair / replace
	Gear/bearing wear/damage	Transmission components	Inspect / replace

9.32

CHAPTER 10 TRANSMISSION \& CRANKSHAFT

GENERAL 10.2
SPECIAL TOOLS 10.2
SPECIFICATIONS 10.2
DRIVE TRAIN 10.2
CONNECTING ROD AND CRANKSHAFT SPECIFICATIONS 10.3
ASSEMBLY VIEWS \& TORQUE VALUES 10.4
CRANKCASE COMPONENTS 10.4
CRANKSHAFT / CONNECTING ROD / CRANKCASE TORQUE PATTERN 10.5
CRANKCASE BOLT LENGTH AND TORQUE PATTERN 10.5
SERVICE PROCEDURES
CRANKCASE SEPARATION 10.610.6
TRANSMISSION ASSEMBLY VIEW 10.8
MAINSHAFT / CLUTCH SHAFT ASSEMBLY VIEW 10.9
COUNTERSHAFT ASSEMBLY VIEW 10.10
SHIFT DRUM AND SHIFT FORK ASSEMBLY VIEW 10.11
POWER DELIVERY (TYPICAL 6-SPEED) 10.12
TRANSMISSION REMOVAL 10.13
CLUTCH SHAFT INSPECTION / REMOVAL 10.13
TRANSMISSION INSPECTION 10.14
CRANKSHAFT REMOVAL 10.15
CONNECTING ROD SIDE CLEARANCE INSPECTION 10.16
CONNECTING ROD REMOVAL / IDENTIFICATION 10.16
CONNECTING ROD INSPECTION (BIG END) 10.17
CONNECTING ROD BEARING INSPECTION 10.17
CONNECTING ROD BEARING CLEARANCE INSPECTION (TYPICAL) 10.18
CONNECTING ROD BEARING SELECTION 10.18
CRANKSHAFT INSPECTION 10.19
CONNECTING ROD INSTALLATION 10.19
CRANKSHAFT CLEANING 10.20
MAIN BEARING INSPECTION 10.20
MAIN BEARING OIL CLEARANCE INSPECTION 10.20
LEFT CRANKCASE ASSEMBLY 10.21
RIGHT CRANKCASE ASSEMBLY 10.22
CRANKCASE REED VALVE ASSEMBLY REMOVAL \& INSPECTION 10.22
CRANKSHAFT INSTALLATION 10.22
TRANSMISSION INSTALLATION 10.23
BALANCE SHAFT 10.24
BALANCE SHAFT REMOVAL \& INSPECTION 10.24
BALANCE SHAFT INSTALLATION 10.24
CRANKCASE 10.25
CRANKCASE ASSEMBLY \& SEALING 10.25
TROUBLESHOOTING 10.28

GENERAL

SERVICE INFORMATION

- Remove engine from frame to service internal transmission and/or crankshaft components (Chapter 6).
- The crankcase must be separated to access internal transmission components and crankshaft. Remove:
-Cylinder heads
- Cylinders \& pistons
-Gear shift linkage
-Primary cover and components (as required depending on needed access to other components).
-Regulator / Rectifier and Bracket.
- Starter motor
- Label and store parts neatly to speed the assembly process and ensure that matched parts like connecting rods, camshaft carriers, and bearings can be installed in their original location.
- Crankshaft main bearing replacement requires line boring. This procedure requires full machine shop capabilities and specialized knowledge. It is recommended that a qualified machine shop perform this procedure if it becomes necessary or replace the crankcase assembly.
- Crankshafts and connecting rods are color coded for manufacturing tolerances with a white or red paint mark (or stamped "R" or W"). See page 10.18.
- All torque specifications are "dry" unless specified for oil or locking agent. Refer to exploded views.
- When locking agents are required, use Loctite ${ }^{\text {TM }}$ Primer N to clean fastener before applying locking agent. Primer N reduces cure time of thread locking agent in addition to preparing the surfaces.

SPECIAL TOOLS

CRANKCASE / CRANKSHAFT / CONNECTING ROD SPECIAL TOOLS

Crankshaft Main Bearing Protector: PV-47207
Crankcase Separator: PV-47332
Crankcase Assembly Tools:
Base Tool: PV-45030
Collar: PV-46299 (M36 $\times 1.50$ thread for use with PV-45030
Assembly Adapter: PVX-47429 (for use with PV-45030)
Drive Sprocket Seal Installer: PV-43505A
Clutch Shaft Installation Tool: PV-47331

SPECIFICATIONS

DRIVE TRAIN

Item	Specifications				
Drive Train (General)	Transmission	6 Speed (Overdrive)			
	Primary Reduction Ratio	$1.50: 1$			
	Final Reduction Ratio	$2.12: 1$			
Drive Train (Gear Ratios)				Gear Ratio: 1st Gear	$3.15: 1$
	Gear Ratio: 2nd Gear	$2.03: 1$			
	Gear Ratio: 3rd Gear	$1.53: 1$			
	Gear Ratio: 4th Gear	$1.24: 1$			
	Gear Ratio: 5th Gear	$1.00: 1$			
	Gear Ratio: 6th Gear (Overdrive)	$0.84: 1$			

10.2

CONNECTING ROD AND CRANKSHAFT SPECIFICATIONS

CRANKSHAFT and COMPONENTS			
Part	Part Specific	Standard	Service Limit
Connecting Rod	Connecting Rod to Crankshaft Side Clearance	$\begin{gathered} .22-.42 \mathrm{~mm} \\ \left(.0087-.0165^{\prime \prime}\right) \end{gathered}$	$\begin{aligned} & .65 \mathrm{~mm} \\ & \left(.025^{\prime \prime}\right) \end{aligned}$
	Connecting Rod Bearing to Crankshaft Oil Clearance	$\begin{gathered} .0254-.0635 \mathrm{~mm} \\ \left(.001-.0025^{\prime \prime}\right) \end{gathered}$	$\begin{aligned} & .11 \mathrm{~mm} \\ & \left(.0043^{\prime \prime}\right) \end{aligned}$
	Connecting Rod Small End I.D.	$\begin{gathered} 22.01-22.02 \mathrm{~mm} \\ \left(.8665-.8670^{\prime \prime}\right) \\ \hline \end{gathered}$	$\begin{gathered} 22.09 \mathrm{~mm} \\ \left(.8694^{\prime \prime}\right) \\ \hline \end{gathered}$
	Connecting Rod Width	$\begin{gathered} 20.28-20.34 \mathrm{~mm} \\ \left(.798-.801^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 20.03 \mathrm{~mm} \\ \left(.788^{\prime \prime}\right) \end{gathered}$
	Connecting Rod Big End I.D. (White)	$\begin{aligned} & 50.84-50.85 \mathrm{~mm} \\ & \left(2.0016-2.0020^{\prime \prime}\right) \end{aligned}$	$\begin{aligned} & 50.89 \mathrm{~mm} \\ & \left(2.0031^{\prime \prime}\right) \\ & \hline \end{aligned}$
	Connecting Rod Big End I.D. (Red)	$\begin{aligned} & 50.85-50.86 \mathrm{~mm} \\ & \left(2.0019-2.0024^{\prime \prime}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & 50.89 \mathrm{~mm} \\ & \left(2.0034^{\prime \prime}\right) \\ & \hline \end{aligned}$
Crankshaft Main Bearing / Rod Journals	Connecting Rod Journal Width	$\begin{aligned} & 40.00-40.58 \mathrm{~mm} \\ & \left(1.5748-1.5976^{\prime \prime}\right) \end{aligned}$	$\begin{gathered} 41.35 \mathrm{~mm} \\ \left(1.627^{\prime \prime}\right) \\ \hline \end{gathered}$
	Crankshaft Rod Journal O.D. (White)	$\begin{gathered} 47.970-47.978 \mathrm{~mm} \\ \left(1.888-1.889^{\prime \prime}\right) \\ \hline \end{gathered}$	$\begin{aligned} & 47.94 \mathrm{~mm} \\ & \left(1.8871^{\prime \prime}\right) \\ & \hline \end{aligned}$
	Crankshaft Rod Journal O.D. (Red)	$\begin{gathered} 47.978-47.986 \mathrm{~mm} \\ \left(1.8888-1.8891^{\prime \prime}\right) \\ \hline \end{gathered}$	$\begin{aligned} & 47.95 \mathrm{~mm} \\ & \left(1.8875^{\prime \prime}\right) \\ & \hline \end{aligned}$
	Main Bearing Oil Clearance	```Left .013-.060 mm (.0005 - .0023") Right .014-.061mm (.0005 - .0024")```	.10 mm (.004") .10 mm (.004")
	Left Main Bearing Journal O.D.	$\begin{gathered} 64.952-64.973 \mathrm{~mm} \\ \left(2.5571-2.5579^{\prime \prime}\right) \\ \hline \end{gathered}$	$\begin{gathered} 64.93 \mathrm{~mm} \\ \left(2.556^{\prime \prime}\right) \\ \hline \end{gathered}$
	Right Main Bearing Journal O.D.	$\begin{gathered} 59.952-59.973 \mathrm{~mm} \\ \left(2.3603-2.3611^{\prime \prime}\right) \\ \hline \end{gathered}$	$\begin{gathered} 59.93 \mathrm{~mm} \\ \left(2.359^{\prime \prime}\right) \\ \hline \end{gathered}$
	Crankshaft End Play	$\begin{gathered} .05-.30 \mathrm{~mm} \\ \left(.0019-.0118^{\prime \prime}\right) \end{gathered}$	-
Balance Shaft	Journal O.D., Left (Primary Side) Journal O.D., Right (Oil Pump Drive Side)	$\begin{aligned} & 29.980-29.992 \mathrm{~mm} \\ & 29.969-29.979 \mathrm{~mm} \end{aligned}$	-
Transmission			
Shift Fork	Shift Fork I.D. (Dimension A, page 10.11)	$\begin{gathered} 12.00-12.026 \mathrm{~mm} \\ \left(.4725-.4732^{\prime \prime}\right) \\ \hline \end{gathered}$	$\begin{gathered} 12.05 \mathrm{~mm} \\ \left(.4744^{\prime \prime}\right) \\ \hline \end{gathered}$
	Shift Fork Pin O.D. (Dimension B, page 10.11)	$\begin{gathered} 6.036-6.136 \mathrm{~mm} \\ \left(.2376-.2416^{\prime \prime}\right) \\ \hline \end{gathered}$	$\begin{aligned} & 6.02 \mathrm{~mm} \\ & \left(.2370^{\prime \prime}\right) \\ & \hline \end{aligned}$
	Shift Fork Width (Dimension D, page 10.11)	$\begin{aligned} & 5.10-5.30 \mathrm{~mm} \\ & \left(.2008-.2086^{\prime \prime}\right) \end{aligned}$	$\begin{aligned} & 5.05 \mathrm{~mm} \\ & \left(.1988^{\prime \prime}\right) \\ & \hline \end{aligned}$
Shift Fork Rail	Shift Fork Rail O.D. (Dimension C, page 10.11)	$\begin{gathered} 11.948-11.972 \mathrm{~mm} \\ \left(.4704-.4713^{\prime \prime}\right) \\ \hline \end{gathered}$	$\begin{gathered} 11.92 \mathrm{~mm} \\ \left(.4693^{\prime \prime}\right) \\ \hline \end{gathered}$
	Shift Fork Rail Runout	-	$\begin{aligned} & .025 \mathrm{~mm} \\ & \left(.001^{\prime \prime}\right) \end{aligned}$
Shift Drum	Shift Drum Groove	-	Replace drum if any wear is evident

ASSEMBLY VIEWS \& TORQUE VALUES

CRANKCASE COMPONENTS

CRANKSHAFT / CONNECTING ROD / CRANKCASE TORQUE PATTERN

CRANKCASE BOLT LENGTH AND TORQUE PATTERN

Crankcase Bolt Torque: Torque bolts in order 1-14 (shown below) in two steps to 30 Nm ($22 \mathrm{lb}-\mathrm{ft}$.).
Repeat 30 Nm (22 lb ft . torque.

10.5

SERVICE PROCEDURES

CRANKCASE SEPARATION

1. Drain engine oil.
2. Remove drive sprocket (Chapter 11).
3. Remove regulator/rectifier to avoid damage.
4. Remove engine and mount securely on an engine stand. (Chapter 6).
5. Remove primary cover (Chapter 9).
6. Remove cylinder heads (Chapter 7), cylinders, and pistons (Chapter 8).
7. Remove shift ratchet and clutch (Chapter 9).

NOTE: For transmission service only, remove:

- Clutch
- Shift drum star (A).
- Countershaft retaining bolt (C).

This allows transmission removal after cases are split.

NOTE: For complete engine disassembly, refer to Chapter 9 to remove:

- Flywheel
- Torque compensator
- Starter gear \& one way clutch
- Primary drive gear
- Starter idler gear and shaft

9. Loosen remaining crankcase bolts evenly and remove from case. Note the two different bolt lengths and the locations of each (page 10.5).
10. Install the crankshaft bearing protector over the cam chain drive gear on the crankshaft.
Special Tool: Crankshaft Bearing Protector PV-47207
11. Install crankcase separator tool on crankcase over the main shaft and tighten screws. Tighten the center screw while tapping with a soft faced mallet.
Special Tool: Crankcase Separator PV-47332A

PV-47332A
Additional hole is required to use early PV-47332

12. Lift crankcase off and remove bearing protector from cam chain drive sprocket.

NOTE: Components such as the crankshaft, oil pump, balance shaft, transmission, and shift drum can be removed individually for service.

Refer to the following pages as required:

- Crankshaft Service: Page 10.15
- Oil Pump Service: Page 4.8
- Balance Shaft: Page 10.24
- Shift Drum / Transmission: Page 10.13

TRANSMISSION ASSEMBLY VIEW

10.8

COUNTERSHAFT ASSEMBLY VIEW

10.10

SHIFT DRUM AND SHIFT FORK ASSEMBLY VIEW

TRANSMISSION \& CRANKSHAFT

POWER DELIVERY (Typical 6-Speed)

10.12

TRANSMISSION REMOVAL

1. If not removed previously, remove countershaft locating bolt and washer (A). Use clutch shaft older PV-45028 to prevent shaft rotation.

2. Remove shift drum star (B).

3. Remove shift fork shafts (C).
4. Disengage shift forks from grooves in the shift drum.

5. Remove shift forks, shift drum, mainshaft and countershaft from crankcase.
6. Carefully lift crankshaft out of left case.
7. Remove oil pump sprocket, chain, oil pipes, and pump (Chapter 4).
8. Pull balance shaft from left case.

CLUTCH SHAFT INSPECTION / REMOVAL

1. The clutch shaft (D) (Mainshaft 5 th) is press-fit in the bearing inner race. Inspect shaft and bearing with clutch shaft in the crankcase. Rotate gear and check for smooth movement and no play. Inspect gear, bearings, and shaft splines for wear or damage. Remove clutch shaft if bearing or gear service is required (Step 2).

2. Use an arbor press to push clutch shaft out of bearing from clutch side. Support crankcase and protect case mating surface during press operation. Replace bearing if clutch shaft is removed.

TRANSMISSION INSPECTION

Refer to exploded views on page 10.8. Standard specifications for shaft and gears are on page 10.9 (main and clutch shaft) and page 10.10 (countershaft).

Shafts

1. Measure outside diameter of shafts in bearing areas for wear and concentricity as shown on page 10.9 and 10.10. Look closely at splines and retaining ring grooves of shafts for wear. Inspect ends of shafts for signs of wear:

- Dull finish
- Discoloration
- Rough or uneven surface
- Measurement outside of specification

Gears

1. Visually inspect:

- Gear internal splines (A)
- Gear teeth (B)
- Gear dogs (C) for rounding, cracks, chips
- Gear dog slots (D) for rounding
- Bearing surfaces (E)
- Shift fork grooves (F)

Check each gear for damage, cracks, wear (rounding of dogs or surfaces), or discoloration.

Clutch Shaft Bearings

1. Inspect clutch shaft needle bearings (inside) that support the mainshaft. The clutch shaft should spin freely and smoothly on the mainshaft. The bearings should support the shaft firmly with little or no detectable lateral movement.
2. Replace clutch shaft assembly if bearings are worn or damaged.

Shift Forks, Shift Fork Rails
Refer to specifications listed on page 10.3 and page 10.11.
3. Inspect all contact surfaces (A) of each shift fork. Replace a shift fork if any part is discolored (overheated), unusually scored, warped, or worn beyond service limit.
4. Inspect each shift fork pin (B) for wear or damage and compare to specifications.

5. Inspect shift fork rails (C) for wear, scoring, or runout.

6. Measure shift fork rail O.D. for wear in 3 or 4 places along the length. The rail O.D. should be consistent over the entire length.
7. Slide rails into crankcase holes and check for a good snug fit.

10.14

8. Visually inspect the shift drum bearing (D) in the left crankcase for wear or damage. The bearing must be fully seated in the case and held in position by the retaining plate. Replace the bearing if it is loose in the bore, or if any side play is detected.

9. Temporarily install shift drum into bearing and rotate, checking for smooth bearing operation. Also, inspect shift drum bearing pin in the right crankcase to ensure it is not loose or worn.

SHIFT DRUM INSPECTION

10. Inspect shift drum grooves (E) for wear. Pay close attention to corners of grooves where forks change direction.
11. Inspect shift drum star alignment pin (F). It should fit tightly in drum and shift star.

12. Inspect surface of shift drum star for excessive wear or damage.
13. Inspect right side shift drum bearing (G).
14. Temporarily install shift drum in right hand case bearing and inspect fit. Spin drum to check for smooth bearing operation.

CRANKSHAFT REMOVAL

1. Separate RH crankcase from LH case (page 10.6).
2. Rotate balance shaft (A) until counterweights are clear of crankshaft.

3. Lift crankshaft straight up until clear of case.

NOTE: Connecting rod bearings and main bearings are easily damaged. Be careful not to cause damage to these parts when servicing items within the crankcase.

CONNECTING ROD SIDE CLEARANCE INSPECTION

1. Move connecting rods to one side of crankshaft. Insert a feeler gauge between one connecting rod and the crankshaft. Compare measurement to specification on page 10.3.
2. If clearance recorded exceeds service limit, the crankshaft, connecting rod or both must be inspected and worn parts replaced. Refer to crankshaft inspection on page 10.19 and specifications on page 10.3 to determine which part(s) are outside of specifications.

CONNECTING ROD REMOVAL / IDENTIFICATION

NOTE: The connecting rod caps are marked from the factory, however it is recommended that an additional reference mark be added for clarity. Caps are matched to rods and must be installed with the proper orientation. DO NOT strike or stamp the connecting rod.

1. Use a permanent marker to mark orientation of connecting rods and rod bearing caps. These parts must be installed in their original locations. EXAMPLE: Right connecting rod must be assembled to the right with the bearing cap that was removed from it. The bearing cap and connecting rod must be assembled in the same direction as it was removed using the same bolt.

10.16

CONNECTING ROD INSPECTION (Big end)

1. Refer to page 8.7 for connecting rod small end inspection.

Be sure to match connecting rod caps with their
respective rod and orient the cap properly before
installing the cap. Secure the big end of rods in a vise
equipped with soft, protective jaws before torquing rod
bolts.

2. Remove bearings and install caps on connecting rods. Be sure mating surfaces (A) of rod and cap are clean.
3. Apply Victory engine oil to threads of rod bolts and nuts. Torque evenly in 2 steps to specification (page 10.19).

4. Measure I.D. of connecting rod big end for size and out of round. Compare to specifications on page 10.3.

5. Visually inspect connecting rod upper and lower ends for scoring, damage, or excessive wear.

CONNECTING ROD BEARING INSPECTION

1. Inspect bearing inserts for unusual wear, peeling, scoring, damage etc. Replace as a set if damage is noted. Inspect bearing clearance and refer to Bearing Selection Chart (page 10.18).

CONNECTING ROD BEARING CLEARANCE INSPECTION (Typical)

1. Assemble the connecting rod cap with bearings and torque to specification below.

> TORQUE: Connecting Rod Cap 7 Nm (5 lb-ft) (To Seat Bearing) 55 Nm ($40 \mathrm{lb}-\mathrm{ft}$) (Final Torque)
2. Measure the connecting rod big end bearing I.D. with a dial bore gauge and record.

3. Measure the connecting rod journal on crankshaft and record.
4. Subtract the journal diameter from the connecting rod bearing diameter to calculate oil clearance and compare to specification (page 10.3).
5. If service limits are exceeded, install new rod bearings and recheck oil clearance.
6. If service limits are still exceeded, determine if crankshaft or connecting rods need to be replaced.

CONNECTING ROD BEARING SELECTION

1. There are 3 sizes of connecting rod bearings available: Black, Orange and Blue (see chart below).
2. To determine which bearing to use, look at the color code on RH end of crankshaft...

3. ...and the color code on the connecting rod.

4. Refer to the chart below to select the proper bearing insert.
FOR EXAMPLE: If the CONNECTING ROD paint mark is RED and the CRANKSHAFT stamp is W (white) (or not stamped), use BLUE bearing inserts.

Connecting Rod Bearing Selection Chart		
CON ROD COLOR / CRANKSHAFT	BEARING COLOR (P/N $3514390-\mathbf{x x x})$	BEARING THICKNESS
WHITE Connecting Rod with RED ("R" Stamp) on Crankshaft	Black $(-\mathbf{0 6 7})$	$1.409-1.415 \mathrm{~mm}$
WHITE Connecting Rod with WHITE Crankshaft (or not stamped)	Orange $(-\mathbf{1 5 9})$	$1.413-1.419 \mathrm{~mm}$
RED Connecting Rod with RED Crankshaft	Orange $(-\mathbf{1 5 9})$	
RED Connecting Rod with WHITE Crankshaft (or not stamped)	Blue ($-\mathbf{0 2 7})$	$1.417-1.423 \mathrm{~mm}$

CRANKSHAFT INSPECTION

Record all measurements and compare to specifications on page 10.3. Replace crankshaft if any measurement is worn beyond the service limit.

1. Measure the width of the rod bearing journal.

2. Measure width of connecting rods at big end.

3. Visually inspect all bearing journals for scoring, damage or excessive wear.
4. Crankshaft and connecting rods are identified by color. Be sure to compare measurements to specification on page 10.3 for the proper color (or non-marked) connecting rod or crankshaft.

Measure O.D. of crankshaft rod journal in four places and compare to specifications.

5. Measure O.D. of main bearing journals.

CONNECTING ROD INSTALLATION

1. Make sure proper bearing clearance is achieved by using the correct colored bearing insert for a given color combination of connecting rod and crankshaft.
2. Clean all oil off connecting rod, connecting rod cap and bearing inserts.
3. Install bearing inserts into connecting rods and caps. First, install bearing tab into groove, then press the rest of the bearing into place.
NOTE: Procedure during disassembly called for marking of connecting rods and caps. Ensure that each part is installed in original location including rod cap bolts.
4. Apply assembly lube to connecting rod bearings and crank pin.

Moly Assembly Paste PN: 2871460

5. Install rods and caps onto the crankshaft, observing the "OUT" mark on the connecting rods. "OUT" must face toward the left for the left connecting rod and must face toward the right for the right connecting rod (outside end of crankshaft). Be sure the I.D. marks made previously are aligned.

6. Tighten rod cap bolts:

- To $7 \mathrm{Nm}(5 \mathrm{lb}-\mathrm{ft})$ to seat caps and bearings.
- Tighten to specification in two steps.

TORQUE: Connecting Rod Cap 7 Nm (5 lb-ft) (To Seat Bearing) 55 Nm ($40 \mathrm{lb}-\mathrm{ft}$) (Final Torque)
7. Check that the connecting rods rotate smoothly and freely on crankshaft journal.
8. If a connecting rod or crankshaft was replaced, remeasure side clearance (A) to be sure it is within specification listed on page 10.3 before assembly.

CRANKSHAFT CLEANING

1. Remove blind plugs from crankshaft to ensure that all passages are clear.

CAUTION
Blind plugs are installed with Loctite ${ }^{\mathrm{TM}}$ localized heat (such as a soldering gun) when removing blind plugs.

2. After cleaning passages, apply Loctite ${ }^{\mathrm{TM}} 262$ to blind plug threads and install plugs into crankshaft to specified torque. Plug should be flush with surface of crankshaft.
3. Install woodruff key(s). Install drive and alignment pins.

MAIN BEARING INSPECTION

1. Inspect crankcase main bearing surfaces for wear, peeling, scoring, or damage.
2. Inspect alignment of bearing lubrication hole (A) in left crankcase half or (B) in right case half. Holes must be aligned with their respective oil passage in crankcase.

MAIN BEARING OIL CLEARANCE INSPECTION

1. Measure main bearing I.D. and concentricity with a dial bore gauge for right and left side. Compare to specification (page 10.3). Subtract crankshaft main journal diameter from main bearing diameter to calculate oil clearance.

2. If crankshaft dimensions are within tolerances and oil clearances are incorrect, the crankcase set must be replaced or new main bearings installed and linehoned by a competent machinist.
NOTE: Replace crankcase halves as a set.

LEFT CRANKCASE ASSEMBLY

Prepare LEFT crankcase for assembly:

Refer to exploded view on page $\mathbf{1 0 . 4}$ for torque values, bearing press depth, and locking agent.

1. Clean crankcase and oil passages (A) thoroughly. Rinse and dry with compressed air.

- Install new bearings in crankcase as required.
- Apply a film of lithium grease to outer race of bearings to prevent galling upon installation.
- Press on outer race of bearings using an arbor press and a suitable arbor that is slightly smaller than bearing outside diameter.
- DO NOT press on inner race of ball bearings.

2. Press balance shaft bearing from the primary side using an arbor press (B).

CLUTCH SHAFT INSTALLATION

3. Place clutch shaft support tool press plate on clutch side of crankcase to support inner race of bearing. Clutch shaft is a firm press-fit in bearing, and bearing damage may result if inner race is not supported during the press operation.

Special tool:
Clutch Shaft Bearing Support: PV-47331
4. Press clutch shaft until fully seated using an arbor press (A). Check for smooth, quiet operation after shaft is installed.

RIGHT CRANKCASE ASSEMBLY
Prepare RIGHT crankcase for assembly:
Refer to exploded view on page $\mathbf{1 0 . 4}$ for torque values, bearing press depth, and locking agent.

1. Clean crankcase oil passages (B) thoroughly. Rinse and dry with compressed air.

- Install new bearings in crankcase as required.
- Apply a film of lithium grease to outer race of bearings to prevent galling upon installation.
- Press on outer race of bearings using an arbor press and a suitable arbor that is slightly smaller than bearing outside diameter.
- DO NOT press on inner race of ball bearings.

2. If main bearings are replaced, they must be line-honed with the left side crankcase to proper finished size. Press operation and fitting must be performed by a qualified machinist.

CRANKCASE REED VALVE ASSEMBLY REMOVAL \& INSPECTION

1. Separate engine cases (page 10.6).
2. Remove the retaining screws for the reed valve assembly. Remove breather valve assembly.
3. Inspect the reed valve for bending, pitting, or other damage at the sealing surface that would prevent a good seal.
4. Replace the reed valve as necessary.

CRANKSHAFT INSTALLATION

NOTE: Install left engine case onto an engine stand.

1. Apply assembly paste to main bearings.

Moly Assembly Paste PN: 2871460
2. Hold crankshaft over left crankcase and position rods so that left side rod is in cutout for rear cylinder and right side rod is in cutout for the front cylinder.
3. Place crankshaft into left crankcase half.

TRANSMISSION INSTALLATION

1. Be sure all bearing retainer plate screws are installed and tightened to specification (page 10.4).
2. Be sure clutch shaft (A) is fully seated in bearing.

3. Lubricate parts with Victory engine oil. Apply Moly Assembly Paste (PN 2871460) to ends of transmission shafts.
4. Install shift drum, countershaft, and mainshaft into the left crankcase. Hold mainshaft 4th gear on shaft during assembly. Make certain both shafts are fully seated and rotate freely.
5. Install shift forks in grooves of sliding gears. The two mainshaft forks are identical.
6. Install shift rails through forks.
7. Rotate shift drum to align proper grooves with forks.

8. Move shift fork pins into drum grooves and seat rails.
9. Photo shows transmission installed and shift forks engaged; shift rails seated.

At this point, test the transmission by shifting through the gears while rotating the shafts. Test operation in each gear to ensure transmission works properly before proceeding.

NOTE: Shift transmission into 5Th gear for crankcase assembly

10. Install balance shaft, oil pump with pipes (Chapter 4). and crankshaft (page 10.22) if removed.
11. Refer to Crankcase Assembly on page 10.25 .

BALANCE SHAFT

BALANCE SHAFT REMOVAL \& INSPECTION

1. Remove bolt (A) from oil pump drive sprocket. Use engine lock tool between balance shaft weight and crankcase to hold shaft.

2. Remove sprocket \& chain from oil pump.
3. Remove chain from balance shaft sprocket.
4. Rotate balance shaft until counterweights are clear of crankshaft. Grasp balance shaft and remove it from case.
5. Inspect sprocket teeth for wear or damage.
6. Check shaft for runout, or twisting.
7. Rotate right and left balance shaft bearings by hand while observing bearing rotation. Bearings should run smooth and quiet and shaft should be a snug fit in bearing.
8. Visually inspect bearings for damage.

BALANCE SHAFT INSTALLATION

1. Lubricate balance shaft bearings with engine oil.
2. Insert threaded end of shaft into left crankcase bearing.
3. Install oil pump drive chain onto balance shaft.
4. Install chain and sprocket onto oil pump shaft. Align flats to seat sprocket.

5. Install engine lock tool between balance shaft weight and crankcase (A) to lock balance shaft.
6. Install oil pump sprocket bolt and torque to specification.

TORQUE:

9.6 Nm (85 in-lb)

CRANKCASE

CRANKCASE ASSEMBLY \& SEALING
NOTE: Place transmission is in 5th gear prior to crankcase assembly.

1. Clean crankcase mating surfaces to remove all grease, oil, and old sealant.
2. Check to be sure all shafts are seated, and that all (new) O-rings, alignment dowel pins, oil pipes, etc. are in place.
3. Install the clutch shaft holding tool PV-45028.

4. Apply an even bead of Loctite ${ }^{\mathrm{TM}}$ Ultra Black 598 to entire case sealing surface.
5. Spread out sealer into a thin even layer on entire case mating surface. Be sure all areas are covered. DO NOT ALLOW SEALANT TO DRY. CONTINUE ASSEMBLY UNTIL CASES ARE SEALED AND ALL BOLTS ARE TIGHT.

6. Install crankshaft bearing protector over the cam chain drive sprocket
Special Tool: Crankcase Bearing Protector PV-47207

7. Assemble the Crankcase Installation Tool as shown at right. PVX-47429 is required if seal sleeve is not installed on output shaft.

TRANSMISSION \& CRANKSHAFT

8. Install crankcase installation tool onto the output shaft.
9. Pull crankcase together by tightening nut and tapping on crankcase with a soft mallet.

NOTE: The cases will mate before the mainshaft is drawn fully into bearing. IMPORTANT! Continue to turn nut and tap case and apply approximately 102$136 \mathrm{Nm}(\mathbf{7 5 - 1 0 0} \mathrm{lb}-\mathrm{ft}$.) torque to the nut).
10. Remove the tool.

TORQUE: Crankcase Bolts
(2 steps) $20 / 30 \mathrm{Nm}(15 / 22 \mathrm{lb}-\mathrm{ft})$ then repeat the $30 \mathrm{Nm}(22 \mathrm{lb}-\mathrm{ft}$.) torque

13. Clean threads of countershaft and bolt with Loctite ${ }^{\mathrm{TM}}$ Primer N. Apply 2 drops of Loctite ${ }^{T M} 262$ to threads of countershaft bolt or use a new bolt with pre-applied locking agent. Install bolt with washer (A) and tighten to specified torque

14. Remove tool from shaft and assemble shift mechanism, primary drive, and primary cover. Refer to Chapter 9.
15. Install a new mainshaft (output) seal in RH crankcase using seal installer.

Special tool:

Final Drive Seal Installer PV-43505
16. Inspect output shaft seal sleeve for burrs, nicks, or surface wear. The surfaces that contact bearing race and drive sprocket must be smooth and flat to prevent loosening of the drive sprocket.
17. Install O-ring (B), seal sleeve (C) with tapered edge toward O-ring, and drive sprocket.

NOTE: Use an 8 mm or a $5 / 16$ diameter pin punch in timing hole and shift transmission into 1st gear to hold crankshaft while tightening sprocket nut.

TORQUE: Drive Sprocket Nut
 244 Nm (180 lb-ft.)

Loctite 262

18. Install lock plate screws.

NOTE: The lock plate can be installed in many positions and either side of the plate can be used. If you cannot find a position that will work, flip the plate over and again try to install it. If the plate still does not align, tighten the sprocket nut slightly and try to fit the lock plate again.
19. Rotate the plate CLOCKWISE until it stops and hold it firmly against the nut.
20. Tighten the lock plate screws to specified torque.
21. Install CPS timing wheel.

TROUBLESHOOTING

TROUBLESHOOTING

PROBLEM	POSSIBLE CAUSE	PART(s) AFFECTED	REPAIR RECOMMENDED
Transmission Will Not Shift	Broken Shift Cam	Shift Cam	Replace shift cam
	Bent Shift Forks	Shift Fork	Replace shift fork(s)
	Worn Gearshift Pawl	Shift Cam	Replace shift cam
	Broken Gears	Transmission Gears	Replace necessary parts
	Damaged/Broken Bearings	Transmission, Shift Cam Bearings	Replace necessary parts
	Worn Gear Shift Ratchet Mechanism	Shifter Ratchet	Refer to chapter 9
	Broken or out-of-place spring on shift ratchet	Shift Ratchet Spring	Refer to chapter 9
	Shift Detent Plunger Stuck	Shift Detent Plunger	Repair as necessary
	Frozen Pivot Point, Bent External Shift Linkage	External Shift Linkage	Repair as necessary
	Bent or Distorted Shift Fork Rails	Shift Fork Rails	Replace Shift Fork Rails
	Debris From Broken Parts Locking Transmission	Transmission Components	Repair as necessary
Excessive Noise Related to Bottom End of Engine	Worn Main Bearings	Crankshaft and/or Crankshaft Bearings	Repair as necessary
	Worn Connecting Rod Bearings	Connecting Rod Bearings and/or Connecting Rod and/ or Rod Bearings	Repair as necessary
	Worn Connecting Rod Small End Bushing	Connecting Rod, Connecting Rod Bushing, Piston Pin, Piston	Repair as necessary
	Worn, seized, chipped or broken gear teeth	Transmission Gears	Repair as necessary
	Worn, seized, chipped or broken Transmission Bearings	Transmission Bearings	Repair as necessary
	Originates from Primary Cover	Clutch, Torque Compensator, Flywheel, Starter Drive Assembly, Starter Clutch, Starter Motor	Refer to chapter(s) 9, 16, 17. 18
	Oil Pump	Oil Pump, Oil Pump Drive	Refer to chapter 4
	Cam Drive	Cam Chain, Cam Sprocket	Refer to chapter 7

PROBLEM	POSSIBLE CAUSE	PART(s) AFFECTED	REPAIR RECOMMENDED
Transmission Hard to Shift	Improper Clutch Operation	Clutch	Refer to chapter 9
	Incorrect Oil Viscosity	Engine oil and filter	Refer to chapter 3
	Incorrect Clutch Adjustment	Clutch Adjustment	Refer to chapter 3
	Bent, Rubbing, Sticky. Broken Shift Shaft	Shifter Ratchet Assembly	Refer to chapter 9
	Sticking Pivot Point, Bent External Shift Linkage	External Shift Linkage	Repair or replace components as necessary
	Bent or Distorted Shift Forks	Shift Forks	Replace bent shift fork
	Damaged Shift Drum Grooves	Shift Drum	Replace damaged shift drum
	Shift Detent Plunger Stuck	Shift Detent Plunger	Repair as necessary
	Bent or Distorted Shift Fork Rails	Shift Fork Rails	Replace Shift Fork Rails
Transmission Jumps Out of Gear	Broken Shift Stop Pin	Shift Stop Pin	Replace stop pin
	Worn Shift Drum Pawls or Shifter Ratchet	Shift Drum or Shift Linkage	Replace damaged shift drum or shifter ratchet
	Broken Shift Ratchet Spring	Shift Ratchet Spring	Replace spring
	Damaged Shift Drum Grooves	Shift Drum	Replace shift drum
	Bent, Worn, Distorted Shift Forks	Shift Forks	Replace shift forks
	Bent or Distorted Shift Fork Rails	Shift Fork Rails	Replace shift fork rails
	Worn Engagement Dogs on Transmission Gears	Transmission Gears	Replace necessary parts

NOTES

CHAPTER 11 DRIVE LINE / REVERSE SYSTEM

SPECIAL TOOLS 11.2
DRIVE LINE SPECIAL TOOLS 11.2
ASSEMBLY VIEWS \& TORQUE VALUES 11.2
REAR WHEEL FASTENER TORQUES 11.2
DRIVE SPROCKET FASTENER TORQUES 11.3
BELT GUARD / FASTENER TORQUE 11.4
DRIVE BELT11.5
BELT INSPECTION 11.5
BELT REMOVAL 11.5
BELT INSTALLATION 11.5
DRIVE SPROCKET 11.5
DRIVE SPROCKET AND SEAL REMOVAL 11.5
DRIVE SPROCKET INSPECTION 11.6
DRIVE SPROCKET AND SEAL INSTALLATION 11.6
REAR SPROCKET 11.8
REAR SPROCKET REMOVAL 11.8
REAR SPROCKET INSPECTION 11.8
REAR SPROCKET INSTALLATION 11.8
REVERSE SYSTEM
11.9
11.9
REVERSE DRIVE MECHANISM (IF EQUIPPED)
REVERSE DRIVE MECHANISM (IF EQUIPPED)
11.10
REVERSE GEAR CASE ASSEMBLY VIEW
11.11
REVERSE LINKAGE ADJUSTMENT
11.12
11.12
REVERSE SYSTEM TEST 11.13
REVERSE COUPLER SHAFT KEY REPLACEMENT
TROUBLESHOOTING 11.14
TROUBLESHOOTING11.1411.9
11

SPECIAL TOOLS

DRIVE LINE SPECIAL TOOLS

Output Shaft Seal Installation Tool: PV-43505A
$8 \mathrm{~mm}\left(5 / 16^{\prime \prime}\right)$ Pin Punch (to hold crankshaft for drive sprocket removal / installation): Commercially available Torque Wrench with 250 Nm (185 lb-ft.) range: Commercially available

A. CAUTION

Some drive line repair or maintenance involves supporting the machine with the rear end elevated. Take precautions so that the motorcycle is securely supported when the tire is off the ground. This reduces the possibility of personal injury or damage to the motorcycle.

- Replace belt and sprockets as a set if the drive system has been in service for 5000 miles or more (8000 Km).
- Refer to Chapter 2 for MAINTENANCE of drive belt.
- Refer to Chapter 14 for TIRE REMOVAL, REPAIR, \& BALANCING.
- Refer to Chapter 15 for BRAKE SYSTEM service and repairs.

ASSEMBLY VIEWS \& TORQUE VALUES

REAR WHEEL FASTENER TORQUES

DRIVE SPROCKET FASTENER TORQUES

DRIVE LINE / REVERSE SYSTEM

BELT SPECIFICATIONS / BELT GUARD

DRIVE BELT

 BELTINSPECTION1. Refer to Chapter 2 for belt inspection procedures.
2. Inspect belt tension and adjust if necessary. Refer to chapter 2.
3. If one or more components are damaged, replace belt and both sprockets as a set if the drive system has been in service for 5000 miles (8000 Km) or more.

BELT REMOVAL

NOTE: If you plan to remove the front sprocket, refer to Drive Sprocket Removal located in this chapter.
NOTE: Always mark the drive belt or note its orientation for installation in the same rotational direction.

A warning

A mis-aligned rear axle can cause drive line noise and damage the drive belt, which could cause belt failure and loss of control of the motorcycle.

A. warning

Care should be taken to be sure the motorcycle will not tip or fall while elevated. Severe personal injury or death may occur if the motorcycle tips or falls.

1. Secure the front wheel in a wheel vise.
2. Place a jack underneath the engine and lift until the rear tire is not resting on the surface.
3. Remove both mufflers (Chapter 3).
4. Remove head pipe crossover fasteners as described in head pipe removal (Chapter 3).
5. Loosen head pipe flange nuts.
6. Loosen rear wheel axle nut and loosen each axle adjuster an equal amount of turns. Push wheel forward to slacken belt.
7. Remove front sprocket cover.
8. Pull head pipes outward to gain access to front sprocket cover bolts and provide clearance for cover removal.
9. Remove drive belt.

BELT INSTALLATION

1. Inspect sprockets and verify sprocket fasteners are tight.
2. Place belt onto drive sprocket and rear sprocket.
3. Install drive sprocket cover. Torque fasteners to specification (page 11.3).
4. Adjust belt tension and verify proper alignment (Chapter 2). Torque rear wheel axle nut to specification.
5. Install exhaust.
6. Install right floorboard.

DRIVE SPROCKET

DRIVE SPROCKET AND SEAL REMOVAL

1. Remove drive belt.
2. Remove drive sprocket cover and gasket.
3. Remove sprocket lock plate screws (A) and lock plate.

4. Place transmission in 5th gear.
5. Remove right side lower timing cover and CPS timing wheel.

6. Rotate crankshaft (arrow) using Crankshaft Rotation Socket PV-48736 until key way is aligned with one of the TDC holes in crankcase.

7. Insert an 8 mm or $5 / 16^{\prime \prime}$ diameter pin into crankcase hole and into crankshaft to hold shaft while loosening sprocket nut.
8. Remove sprocket nut.
9. Loosen rear axle nut.
10. Loosen both axle adjusters an equal amount of turns.
11. Push wheel forward until belt is loose.
12. Pull belt off sprocket.
13. Remove front sprocket, spacer, and O-ring from output shaft.
14. If required, remove shaft seal using a suitable tool.

DRIVE SPROCKET INSPECTION

1. Visually inspect sprocket teeth (A) for excessive wear, foreign material damage.

2. Inspect splines (B) for a tight fit on output shaft splines.
3. Inspect the back surface of sprocket hub (C) where it contacts the seal sleeve. Replace if worn or if surface is rough.
4. Inspect outer surface (D), inner surface (E), and sealing surface (F) of seal sleeve. Surfaces must be flat without wear or galling. Replace the sleeve if worn, or if the surface appears rough or chafed. The O-ring sealing surface of slightly chamfered edge must be smooth to seal the shaft.

DRIVE SPROCKET AND SEAL INSTALLATION

1. Apply grease to a new O -ring (G) and install on output shaft.
2. Install the shaft seal (if removed) using special tool PV-43505A.

3. Install seal sleeve (H) with the chamfer on inside diameter of sleeve facing in, toward O -ring.
4. Clean shaft threads and sprocket nut to remove all previous thread locking agent and apply Loctite ${ }^{\text {TM }}$ Primer N.

5. Apply a light film of anti-seize compound to splines of shaft. Place belt onto front sprocket, place sprocket over splines of output shaft.
6. Apply Loctite ${ }^{\mathrm{TM}} 262$ to threads of shaft and nut.
7. Install drive sprocket nut.

NOTE: If primary side is disassembled, shift transmission into 5th gear and install clutch shaft holding tool PV-45028 on the clutch shaft to tighten sprocket nut.

NOTE: If primary side is assembled, follow instructions to hold shaft as described for Drive Sprocket Removal in this chapter.
8. Torque nut to specification.

Drive Sprocket Nut Torque: 244 Nm ($180 \mathrm{lb}-\mathrm{ft}$.) Loctite $^{\text {TM }} 262$

9. Install lock plate.

NOTE: The lock plate can be installed in many positions and either side of the plate can be used. If the plate still does not align, tighten sprocket nut slightly and try to fit the lock plate again.
10. Install lock plate screws (A).
11. Rotate plate CLOCKWISE (B) until it stops and hold it firmly against the nut.

12. Tighten lock plate screws to 9.5 Nm ($85 \mathrm{lb}-\mathrm{in}$).
13. After belt installation, adjust belt tension and wheel alignment as instructed in Chapter 2.
14. Install drive sprocket cover with a new gasket (adhesive side of gasket faces cover). Torque cover screws to 9.5 Nm ($85 \mathrm{lb}-\mathrm{in}$).

Sprocket Cover Bolt Torque: 9.5 Nm (85 inch lb.)
15. Install / tighten exhaust as outlined in Chapter 3 Torque all fasteners to specification.

REAR SPROCKET

REAR SPROCKET REMOVAL

1. Remove rear wheel (Chapter 13).
2. Loosen all sprocket bolts evenly in a star pattern and discard.
3. Remove sprocket.

A. CAUTION
Protect brake disc surface while working on wheel.

REAR SPROCKET INSPECTION

1. Visually inspect sprocket teeth for excessive wear and damage from foreign material or road debris. Inspect hub (B) for cracks or damage.

2. Visually inspect sprocket mounting surface on wheel for wear.

NOTE: If the drive system has been in service for 5000 miles or more, replace both front and rear sprockets along with the belt if any one item is damaged or worn beyond a normal polished appearance. Refer to the Periodic Maintenance Table in chapter 2 for drive system replacement interval.
3. Inspect sprocket mating surface (C) for galling, roughness, or cracks. Surface must be flat, with no burrs or surface irregularities.

REAR SPROCKET INSTALLATION

1. Clean sprocket bolt threads in hub to remove all grease or oil residue.
2. Clean mating surfaces of wheel and sprocket.
3. Install sprocket with new bolts. Do not re-use sprocket bolts.
4. Torque bolts in a star pattern to specified torque.
5. Install rear wheel (Chapter 13).

REVERSE SYSTEM

REVERSE DRIVE MECHANISM (If Equipped)

NOTE: See page 19.24 for reverse electrical system function, component location, and diagnostics. Maintenance (reverse idler shaft lubrication) is in Chapter 2.

REVERSE GEAR CASE ASSEMBLY VIEW

REVERSE LINKAGE ADJUSTMENT

Linkage Rod Adjustment

1. Remove reverse lever (A) and motor cover (B).

2. Be sure the reverse lever is down (rotated fully counterclockwise).
3. Hold linkage rod (C) and loosen jam nut (D).

4. Temporarily place reverse lever on lever shaft (E).
5. Verify linkage rod ball joint (F) is tightened securely to lever shaft (that it did not come loose when jam nut was loosened in Step 3). If ball joint is loose, hold lever and tighten ball joint to lever shaft.

6. Rotate linkage rod to lengthen it until reverse idler gear lightly bottoms out against gearcase cover. Be sure lever shaft does not begin to rotate off the fully DOWN position.
NOTE: If linkage rod rotated past the point at which the gear is bottomed in the cover, the reverse lever will begin to rotate upward. If lever move upward, shorten linkage rod until reverse lever is down, then repeat adjustment.
7. When adjustment is correct, hold linkage rod and tighten jam nut firmly against linkage rod. Tighten jam nut.
8. Temporarily install the reverse lever and test the reverse actuation. Lever should return to a horizontal position when disengaged.
9. Re-assemble cover and reverse lever. Hold lever by hand to prevent rotation while tightening screw.
10. Perform Reverse System Test ().

REVERSE SYSTEM TEST

1. Seated in a normal riding position on motorcycle, place transmission in Neutral and move reverse lever to the DOWN position (reverse disengaged).
2. Start engine and let it idie.
3. Slowly lift reverse lever toward UP (Reverse) position, while watching the gear position indicator on the instrument panel ("N"). The lever should move at least $1 / 4$ inch (6 mm) and no more than $1 / 2$ inch (12 mm) before the gear position indication changes to an " R " (a slight delay in the display is normal).

4. Lift reverse to fully UP (Reverse) position. Press the starter button. The motorcycle should move in reverse.
5. With Reverse engaged (reverse lever UP) pull in the clutch and place the transmission in any gear. The engine should stop immediately.
6. Return lever to Forward (down) position. Verify the engine will start, and that does not stop when the transmission is shifted into gear.
7. If reverse system does not operate properly as described above, see Reverse System Diagnostics beginning on page 19.25.

REVERSE COUPLER SHAFT KEY REPLACEMENT

The reverse gear drive shaft (coupler) has an inner and an outer drive key. If the reverse motor turns but the motorcycle does not move in reverse gear, inspect both drive keys on the shaft.

1. Remove reverse lever.
2. Remove reverse motor cover.
3. Hold linkage rod (A) and loosen jam nut (B). Do not loosen or remove ball joint at reverse lever shaft (C).

4. Disconnect reverse motor wire harness and reverse switch wire connector.
5. Remove motor mount bolts.
6. Rotate linkage rod to unscrew the ball joint while moving the motor outward until linkage rod is separated from ball joint.
7. Pull motor outward to separate coupler from gear shaft or motor shaft. Set motor assembly aside.
8. Pull coupler off motor shaft (or gear shaft).
9. Inspect drive key at each end and replace if damaged.
10. Lubricate coupler shaft with Moly Assembly Paste (PN 2871460) and install coupler shaft on gear shaft.
11. Install motor, routing the wire harness smoothly to the connector, away from mounting boss or moving parts.
12. Screw ball joint into linkage rod and engage motor end of coupler shaft, aligning key with key way.
13. Start motor mounting bolts and tighten lightly by hand. Continue to adjust linkage rod until motor mount tabs mate squarely with the mounting boss on the frame.

NOTE: Be sure motor is flush with frame before tightening mount bolts!
14. Assemble remaining parts in reverse order of disassembly (see page 11.9 for fastener torques).
15. Adjust reverse linkage (page 11.11) and perform a system test (page 11.12).

TROUBLESHOOTING

TROUBLESHOOTING

PROBLEM	POSSIBLE CAUSE	POSSIBLE REPAIR NEEDED
Belt Shows Excessive Wear On One Side	Out-of-Alignment	Align rear wheel
Belt Squeal / Noise	Belt too tight	Adjust to 32mm Deflection @ 10 lbs . load
	Out-of-Alignment	Align rear wheel
Broken Sprocket Teeth	Foreign material damage Loose drive belt or sprocket	Replace parts or repair as necessary
Broken or Torn Cogs on Belt	Foreign material damage, loose belt or sprocket	Replace parts as necessary
Belt Jumps Sprocket Teeth	Worn, damaged or out of adjustment belt or sprockets	Replace parts as necessary
	Belt Loose	Adjust Belt
Excessive Wear, Binding Suspension	Belt Tight	Adjust Belt
Broken Belt	Belt weakened by foreign material damage. Belt run excessively tight or loose for extended period	Replace Belt, Replace Sprockets
Reverse / Starter Motor Inoperative		See Chapter 19
Reverse Motor Turns But Vehicle Does Not Move	Reverse drive key(s) sheared.	Remove drive motor with shaft and replace key(s).

CHAPTER 12 FRONT SUSPENSION / CONTROLS

GENERAL 12.2
SPECIAL TOOLS 12.2
MAINTENANCE PRODUCTS 12.2
TORQUE SPECIFICATIONS 12.2
SPECIFICATIONS 12.3
ASSEMBLY VIEWS \& TORQUE 12.4
HANDLEBAR CONTROLS: CROSS ROADS / CROSS COUNTRY 12.4
HANDLEBAR / HANDLEBAR RISER ASSEMBLY VIEW: CROSS ROADS 12.5
HANDLEBAR / HANDLEBAR RISER ASSEMBLY VIEW: CROSS COUNTRY 12.6
CLUTCH CABLE I LEVER PERCH ASSEMBLY VIEW: CR \& CC 12.7
FRONT FORK ATTACHMENTS: CROSS ROADS \& CROSS COUNTRY 12.8
FRONT AXLE ASSEMBLY VIEW: CROSS ROADS \& CROSS COUNTRY 12.9
FORK TUBE INSTALLATION STEPS: CROSS ROADS \& CROSS COUNTRY 12.10
STEERING HEAD ADJUSTMENT / TOP TRIPLE CLAMP: CR \& CC 12.11
FORK TUBE ASSEMBLY VIEW: CROSS ROADS \& CROSS COUNTRY 12.12
FRONT WHEEL ASSEMBLY VIEW 12.13
ASSEMBLY VIEW, BILLET FRONT WHEEL HUB (ALL) 12.14
HEATED GRIPS 12.15
SERVICE PROCEDURES 12.16
HANDLEBAR REMOVAL (ALL MODELS) 12.16
HANDLEBAR INSTALLATION 12.18
CLUTCH CABLE 12.19
THROTTLE CABLE 12.20
FRONT WHEEL REMOVAL 12.23
FRONT AXLE INSPECTION 12.23
FRONT WHEEL INSPECTION 12.23
BRAKE DISC REMOVAL 12.24
BRAKE DISC INSTALLATION 12.24
FRONT WHEEL BEARING INSPECTION 12.24
FRONT WHEEL BEARING REMOVAL (TYPICAL) 12.25
FRONT WHEEL BEARING INSTALLATION 12.25
FRONT FORK REMOVAL 12.26
TUBE FRONT FORK INSTALLATION 12.27
FRONT FORK DISASSEMBLY 12.28
FORK SEAL REMOVAL / TUBE DISASSEMBLY 12.30
FRONT FORK INSPECTION 12.31
FRONT FORK TUBE ASSEMBLY 12.32
FORK OIL FILLING / LEVEL SETTING 12.34
TRIPLE CLAMP REMOVAL 12.38
STEERING HEAD BEARING INSPECTION (TRIPLE CLAMP REMOVED) 12.39
TRIPLE CLAMP INSTALLATION 12.40
STEERING HEAD BEARING REPLACEMENT 12.42
STEERING HEAD BEARING ADJUSTMENT 12.44
TROUBLESHOOTING 12.45

GENERAL

IMPORTANT INFORMATION

A. WARNING

Victory motorcycles are produced using the designated tires listed as original equipment. This includes field testing to ensure stability and superior handling. The use of tires other than original equipment may cause instability which could lead to a crash, resulting in serious injury or death. Use only the recommended tires inflated to the recommended tire pressures based on load conditions as listed on the tire inflation decal.

Tubeless tires are used on certain Victory models. Operating the motorcycle with damaged rims creates a safety hazard including air pressure loss, steering imbalance and/or reduced steering control. Do not attempt to repair or straighten damaged rims.

A caution

Work performed to the front end of the motorcycle usually involves supporting the machine with the front end elevated. Take precautions so that the motorcycle is securely supported when the front tire is off the ground. This reduces the possibility of personal injury or damage to the motorcycle.
Leaking front fork seals are a safety hazard and should be replaced immediately if a leak is found. Fork oil could contaminate front brake components which could reduce stopping ability of the motorcycle. Contaminated brake discs or pads greatly reduce stopping force available \& increase stopping distance. Brake discs can be cleaned using Victory brake cleaner. NEVER attempt to clean contaminated brake pads. Replace pads as a set.

- Refer to Chapter 2 for MAINTENANCE of front end components.
- Refer to Chapter 14 for TIRE REMOVAL, REPAIR, \& BALANCING
- Refer to Chapter 15 for BRAKE SYSTEM service and repairs and HYDRAULIC CLUTCH SYSTEM BLEEDING.

SPECIAL TOOLS

SPECIAL TOOLS

Fork Spring Compressor	PV-49463
Damper Rod Extension Tool	PV-49453
Cartridge Holder	PV-49452
Fork Oil Level Tool	PV-59000-A
Fork Seal Driver	PV-47035
Fork Seal Guide	PV-47037
Wheel Bearing / Stem Bearing Race Installation Set	PV-43508
Spanner Socket (Steering Stem)	PV-43509
Spanner Wrench (Steering Stem)	

MAINTENANCE PRODUCTS

MAINTENANCE PRODUCTS

Hand Grip Adhesive - Three Bond 1501 (10ml tube)	2872575
Fork Oil, KYB Inverted Cartridge	2877421

Refer to page 2.3 for a list of maintenance products and part numbers.

TORQUE SPECIFICATIONS

FASTENER TORQUE SPECIFICATIONS

Refer to Assembly Views for fastener torque specifications.

FORK SPECIFICATIONS

SPECIFICATIONS

Cross Roads / Cross Country			
Item		Standard	Service Limit
Axle Runout		-	. 20 mm (.008")
$\begin{aligned} & \text { Front Wheel Runout } \\ & \text { (Billet and Cast Type) } \\ & 3.00^{\prime \prime} \times 18^{\prime \prime} \end{aligned}$	Axial	. 50 mm (.020')	2.0 mm (.080')
	Radial	. 50 mm (.020")	2.0 mm (0800°)
Fork Spring Free Length (Top Spring)		247.6 mm (9.75 ${ }^{\circ}$)	243.0 mm (9.57^{*})
Fork Spring Free Length (Bottom Spring)		158.75 mm (6.25°)	154.75 mm (6.05*)
Fork Spring Pre-Load (Total)		58 mm (2.283*)	
Fork Spring Rate (Top Spring)		$\begin{aligned} & 20.7 \mathrm{~N} / \mathrm{mm} \\ & (118 \mathrm{lb} . / \mathrm{inch}) \end{aligned}$	
Fork Spring Rate (Bottom Spring)		$10.6 \mathrm{~N} / \mathrm{mm}$ (60 lb ./inch)	
Fork Tube Diameter (Inner Tube)		43 mm	Not Applicable
Fork Tube Runout		-	20 mm (.008")
Fork Oil Type / Weight	Victory Fork Oil (YELLOW) P/N 2877421		
Fork Oil Level From Top of Tube (Springs and spring guides removed, tube fully compressed, cartridge rod at bottom of travel)		106 mm (4.17")	$(\pm 1 \mathrm{~mm})\left(\pm .040^{\prime \prime}\right)$
Fork Oil Volume (per leg, dry)	NOTE: Oillevelmust be measured and adjusted to specification	$\begin{gathered} 481 \mathrm{cc}(\pm 3 \mathrm{cc}) \\ \text { (16.27 fl.oz. (} \pm .10 \text { fl.oz.) } \end{gathered}$	Not Applicable
Steering Bearing Adjustment	Refer to page 12.11 or See "TRIPLE CLAMP INSTALLATION" on page 12.40,		

ASSEMBLY VIEWS \& TORQUE

HANDLEBAR CONTROLS: CROSS ROADS / CROSS COUNTRY

12.4

HANDLEBAR / HANDLEBAR RISER ASSEMBLY VIEW: CROSS ROADS

HANDLEBAR / HANDLEBAR RISER ASSEMBLY VIEW: CROSS COUNTRY

12.6

CLUTCH CABLE I LEVER PERCH ASSEMBLY VIEW: CROSS ROADS \& CROSS COUNTRY

FRONT SUSPENSION / CONTROLS

FRONT FORK ATTACHMENTS: CROSS ROADS \& CROSS COUNTRY

12.8

FRONT AXLE ASSEMBLY VIEW: CROSS ROADS \& CROSS COUNTRY

FORK TUBE INSTALLATION STEPS: CROSS ROADS \& CROSS COUNTRY

FORK TUBE INSTALLATION

Note: Adjust steering head (page 12.11) prior to installing fork tubes.

1 Install tubes to proper height (Fig.1) or install left and right fork tubes to same height in top clamp measured as shown in Photo 1 below.
2 Tighten bottom bolts on lower triple clamp
3 Tighten top bolts on lower triple clamp
4 Repeat Step 2 \& Step 3
5 Tighten upper triple clamp bolts

STEERING HEAD ADJUSTMENT / TOP TRIPLE CLAMP: CROSS ROADS / CROSS COUNTRY

STEERING HEAD BEARING ADJUSTMENT / TOP TRIPLE CLAMP INSTALLATION*

Grease lower bearing and install lower triple clamp to steering head.2 Install top bearing and steering stem adjustment nut finger tight.

3 Turn lower clamp fully right against steering stop and torque stem nut to 39.3 Nm (29.0 lb -ft).
4 Turn steering assembly fully left and back to full right 5 times.
5 Turn lower clamp fully left against stop.
6 Place a mark or tape on frame, in direct alignment with one of the slots of the adjuster nut.
7 Loosen adjuster nut 90 degrees (a new slot of nut should now be aligned with the mark or tape placed on the frame in Step 6).

8 Install upper triple clamp and spacer.
9 Grease threads of stem and install crown nut.

10 Torque nut to $97.6 \mathrm{Nm}(72.0 \mathrm{lb}-\mathrm{ft})$.

- To remove or replace top triple clamp when fork tubes are installed, loosen fork tube pinch bolts and slide both fork tubes down out of top clamp before removing top clamp.

4

FORK TUBE ASSEMBLY VIEW: CROSS ROADS \& CROSS COUNTRY

12.12

FRONT WHEEL ASSEMBLY VIEW

12.13

ASSEMBLY VIEW, BILLET FRONT WHEEL HUB (ALL)

12.14

HEATED GRIPS

TROUBLESHOOTING

To Measure Individual Grip Wire Resistance:
Black - Brown: 13 Ohms
Black - Blue: 8 Ohms

TROUBLESHOOTING:

To Measure Grip Resistance at Switch:
(This test measures the resistance of both grip heater grids in parallel).
Disconnect DB (High) and BN (Low) wires from switch.
Measure resistance between DB wire and ground: Approx 4 Ohms
Measure resistance between BN wire and ground: Approx 6.5 Ohms
If resistance is out of range, test each grip resistance individually.

JUMPER HARNESS TO MAIN HARNESS WIRING
$\mathrm{LB}=$ Light Blue; $\quad \mathrm{BU}=$ Blue; $\quad \mathrm{DB}=$ Dark Blue; $\quad \mathrm{BN}=$ Brown; $\mathrm{BK}=$ Black: $W H=$ White; $\mathrm{PK}=$ Pink

Jumper Harness Wre Color \downarrowMain Hamess \downarrow Wre Color	BK	LB	DB	BN
BK	\bullet			
BU/PK				
BU				
BN				\bigcirc

SWITCH CONTACTS			
Wre Color	BN	LtBU	DB
HIGH			
OFF			
LOW			

SERVICE PROCEDURES

HANDLEBAR REMOVAL (ALL MODELS)

Abstract

4 WARNING Control cables must be routed, installed, and adjusted correctly in order to function properly. Note the way each cable is routed and how it is secured before removing the cable. Serious injury or death may occur if cables are incorrectly routed, installed, or adjusted. Do not bend or twist the inner cable during installation, or permanent cable damage may result

CAUTION

Left handlebar grip and grip end may be damaged during removal. Plan on replacing left grip and grip end if grip must be removed. Cover painted or chrome parts to prevent damage. Use care to protect fuel tank and front fender. Tank removal is recommended (Chapter 5). Secure, set aside, or support parts as they are removed.

1. Cross Country Models: Remove fairing and then remove fairing support $/$ dash as an assembly to access handlebar clamps and risers. See Chapter 3 for procedure.
Cross Roads Models: Proceed to Step 2.

2. Cut tie straps (A) and (B) on both sides of handlebars to release wiring and cables. Note location of any additional straps (C) if accessories are installed.

3. Loosen lock nut (D) and turn adjuster (E) toward switch housing to obtain maximum throttle cable free play.

Also refer to assembly views on page 12.4 - page 12.7 as required for the following steps.
4. Cover fuel tank to protect it from damage. Secure all cables, switches and controls out of the way as they are removed.
5. Disconnect front brake switch wires.
6. Remove front master cylinder clamp.

7. Secure master cylinder away from handlebars with reservoir level.

Keep brake reservoir in an upright position to prevent air from entering the system. Bleeding is required if air enters the system.
8. Remove cruise control switch screws (F) from bracket (if equipped). Remove bracket screws (G) and slide bracket away from switch body.

9. Remove (2) screws from bottom switch plate. Tip the cable end of the plate downward to release tab (I) at the grip end and remove the plate. Remove longest screw (J) from front corner of switch and separate the switch halves.

10. Slide throttle grip inward and tap right handlebar end with a soft faced hammer to remove.
NOTE: If end cap is being replaced, grasp it with an adjustable pliers and remove with a twisting motion.

11. Remove cables from throttle grip. Do not kink or bend the cables. Do not attempt to slide the grip off the end of the handlebar with cables attached.

12. Grasp left handlebar end cap by with an adjustable pliers and twist to remove.
13. Remove left hand grip. Heated Grips: Fold back edge of grip and remove setscrews.

Non-heated grips: Insert a thin screw driver between grip and bar to release adhesive bond. A small amount of solvent can be used to help loosen the adhesive. DO NOT ALLOW SOLVENT TO CONTACT COSMETIC SURFACES!
14. If handlebars will be reinstalled, remove any residual adhesive from bar with solvent.
15. Disconnect clutch interlock switch wire connector and remove clutch lever perch.
16. Remove audio / com switches (if equipped) and bracket.
17. Remove left handlebar switch.

18. If handlebar risers will be removed, remove handlebars I risers as an assembly. If risers will not be removed, support the handlebars and loosen the rear handlebar clamp screws, and then the front. Remove handlebars.

HANDLEBAR INSTALLATION

1. Reverse the removal process for installation.
2. For Cross Roads models: See "HANDLEBAR / HANDLEBAR RISER ASSEMBLY VIEW: CROSS ROADS" on page 12.5 .

For Cross Country models: See "HANDLEBAR / HANDLEBAR RISER ASSEMBLY VIEW: CROSS COUNTRY" on page 12.6 .

CLUTCH CABLE

Clutch Cable Removal

1. Protect clutch release arm (A) with a shop towel. Using an adjustable wrench, rotate release arm inward and disconnect cable from release arm.

2. Remove nut (B) from lower end of cable and remove cable from bracket.
3. Remove side covers and seat (Chapter 3).
4. Remove fuel tank (Chapter 5).
5. Pull clutch cable casing (C) straight out until clear of lever perch and rotate cable outward to align inner cable wire with slot in lever. Do not bend or kink cable.

6. Cut tie strap on rear engine mount plate. Pull lower end of clutch cable out right side.

7. Note routing of clutch cable through frame and slide out through top triple clamp.

Clutch Cable Installation

1. Route clutch cable as shown on page 12.7 (through tie strap at front right side of steering head (with throttle cables) and up through left side opening in upper triple clamp).
2. Install cable in lower bracket and tighten lock nut to 5.4 Nm ($48 \mathrm{lb}-\mathrm{in}$).
3. Apply Moly Assembly Paste (PN 2871460) to both cable ends.
4. Connect lever end of cable to lever and perch. Do not kink or bend cable.

5. Rotate release arm inward (as in Removal Step 1) and connect lower end of cable to release arm.
6. Secure cable to lower wire harness (only) and to rear engine mount bracket with a tie strap as shown above and on page 12.7.
7. Adjust clutch cable free play (page 2.13).

> Clutch Cable Free Play
> $.5-1.5 \mathrm{~mm}\left(.020-.060^{\prime \prime}\right)$

THROTTLE CABLE

Throttle Cable Removal

1. Remove fuel tank (Chapter 5).
2. Hold upper cable adjuster (A) and loosen knurled lock nut (B).
3. Turn the adjuster nut fully inward (toward switch block) to gain maximum cable free play.

4. Cut upper and lower tie straps (C).

5. Loosen nuts (D) on each cable and remove cables from bracket.
6. Remove cable ends from throttle reel. Do not kink or bend the cables.

NOTE: The dark colored cable is mounted on the bottom of the bracket.

7. Remove (2) screws (F) from bottom switch plate. Tip the cable end of the plate downward to release tab (G) at the grip end and remove the plate. Remove longest screw (H) from front corner of switch and separate the switch halves.

8. Remove cables from throttle grip. Do not kink or bend the cables.

9. Remove cables from lower switch.
10. Take note of the cable routing before removing cables.

- Through opening in right side of upper triple clamp.
- Through tie strap on right side of steering head with clutch cable. This tie strap must not be pulled tight upon installation. Cables must be able to move freely in strap.

11. Remove cables.

Throttle Cable Installation

1. CABLE IDENTIFICATION: The throttle opening (pull) cable is darker in color at the throttle body end. It is the front-most cable in the switch cube and the lowermost cable in the throttle body bracket.

On vehicles equipped with cruise control, the throttle "push" cable can be identified by the cruise-cancel switch near the throttle body end.
2. Route the cables as noted in Step 10 of Removal procedure.
3. Arrange throttle opening (pull) cable toward the front of the right hand switch cube. Arrange the cables to route smoothly toward the throttle body without twisting around each other.

4. Feed the inner cables up through the switch cube. Cables should lie flat against the switch (switch shown removed for clarity).

See "HANDLEBAR CONTROLS: CROSS ROADS / CROSS COUNTRY* on page 12.4 .
5. Apply a thin film of Victory Multi-purpose grease to the barrel ends of the cables and carefully attach them to the twist grip.
6. Apply a thin film of Dielectric grease to the switch mounting surface of the handlebar.
7. Install upper half of the switch cube and tighten the single screw to $25 \mathrm{lb}-\mathrm{in}$. (3 Nm).
8. Be sure the cables are seated properly in the switch cube and install the lower cable retaining plate using the two screws. Torque screws to $25 \mathrm{lb}-\mathrm{in}$. (3 Nm).
9. Apply a thin film of Victory Multi-purpose grease to the barrel ends of the lower cable and attach them to the throttle body reel.
10. Place each cable in the bracket with one nut on either side of the bracket. Set the adjustment range in the middle. Tighten the nuts against the bracket securely.

11. Adjust throttle cable free play to $3-6 \mathrm{~mm}$ ($1 / 8-1 / 4$ inch) (see procedure page 2.10).

Throttle Cable Free Play $3-6 \mathrm{~mm}$ (1/8-1/4")
12. Check throttle operation.

- Be sure the throttle opens and closes smoothly in all steering positions, and returns to the fully closed position when throttle grip is released.
- If throttle grip does not return properly, re-check cable free play, inspect cables for proper routing. and be sure cables are attached properly to the throttle reel.
- Inspect condition of cables for kinks, damage, or frayed ends.
- Be sure switch cube and grip are located properly on handlebar, and that screws are properly torqued.
- Be sure all cable fasteners are tight.

13. Start engine with transmission in neutral.
14. Turn handlebars full right to full left. Idle speed should not change in any steering position. If idle speed changes, re-check throttle grip free play, inspect cables for proper routing, and be sure cables are attached properly. Replace cable(s) if damaged.

FRONT WHEEL REMOVAL

1. Also refer to illustration on page 12.9 .
2. Remove right or left front brake caliper screws (A) and caliper.

CAUTION

Do not twist the brake hose or brake line. Do not allow caliper to hang from the brake hose. Secure caliper in such a way to avoid hose damage.

NOTE: Do not operate the front brake lever with the caliper or wheel removed.

3. Loosen axie pinch bolts on lower right fork leg (B).

4. Securely support front end of motorcycle so front wheel is off the ground.

CAUTION

Take precautions so that the motorcycle is securely supported when the tire is off the ground.
5. Support wheel and remove axle. Be prepared to catch spacers on each side of the wheel and remove wheel.

FRONT AXLE INSPECTION

1. Place axle in V-blocks and inspect runout. Compare to specifications on page 12.3.

2. Replace axle if it fails inspection. Do not attempt to straighten a bent axle.

FRONT WHEEL INSPECTION

1. Install front wheel in truing stand.

NOTE: Bearings must be in good condition to accurately measure runout.
2. Set up a dial indicator to measure radial runout (up and down) (A) and compare to specifications on page 12.3.
3. Position dial indicator to measure axial runout (side to side) (B) and compare to specifications on page 12.3.

4. Visually inspect wheel for cracks.
5. Replace wheel if it fails visual or measured inspection. Do not attempt to straighten cast or billet wheels.

BRAKE DISC REMOVAL

NOTE: Disc must be inspected before removing from wheel.
Refer to Chapter 15 for disc inspection.

1. Remove front wheel (page 12.23).
2. Position wheel with brake disc facing up (protect the other disc and wheel when removing opposite disc.
3. Remove and discard brake disc screws.
4. Remove brake disc from wheel.

BRAKE DISC INSTALLATION

1. Clean screw hole threads with Loctite Primer N.
2. Clean surface of wheel and brake disc with Victory Brake Cleaner.
3. Install disc on wheel with part number facing OUT.
4. Replace screws with new screws which have preapplied locking agent.

WARNING

Do not re-install brake disc screws. Use only new screws which have a pre-applied locking agent.
5. Install brake disc with part number to outside.

FRONT WHEEL BEARING INSPECTION

NOTE: Inspect bearings installed in the wheel. Do not remove to inspect. Bearings cannot be repacked. Replace both wheel bearings if one or both fail inspection, or if either bearing was removed. For inspection with the wheel installed on the vehicle, refer to Chapter 2.

1. Visually inspect bearing seals on each side for wear or damage.

2. Check bearings by turning inner race (A) by hand.

- Look for signs of discoloration, scoring, galling, or contamination from moisture or dirt. Replace bearings if any of the above are present.
- Turn the inner race of the bearings. The bearings should turn smoothly and quietly. The inner race should be firm with minimal side to side movement and no detectable up and down movement.

3. Discard bearings that fail any of the above inspections.

\triangle CAUTION

Do not reuse bearings after removing them from the wheel. Removal damages the bearings internally.
4. Inspect bearing fit into wheel hub. The outer race of the bearing must fit tightly into the bore. You should not be able to move it (or remove it) by hand. Replace the wheel if outer race of a new bearing does not fit tightly in the bore.

FRONT WHEEL BEARING REMOVAL (TYPICAL)

NOTE: Replace both wheel bearings as a set. Do not replace only one wheel bearing.

1. Place a shop towel over the edge of seal bore.

2. Carefully remove both seals using a pry-bar and discard. Be careful not to scratch the seal bore.
3. Remove retaining ring from left side.
4. Install bearing remover element into left side bearing and remove it.
5. Remove bearing spacer from wheel hub, measure the length and compare to specification. Replace spacer if it is worn beyond the service limit or if the bearing contact surface is damaged.

Minimum Spacer Length: $\mathbf{1 2 1 . 8 0 ~ m m ~ (4 . 7 9 5 ") ~}$
6. Drive out right side bearing using a suitable drift or extract the bearing with a bearing puller.

FRONT WHEEL BEARING INSTALLATION

NOTE: Refer to illustration below for Steps 3-9.

1. Clean inside of wheel hub and bearing spacer. Replace spacer if any wear is evident on the ends.
2. Place new bearing into left hand side of wheel with markings facing up (toward outside of hub).
3. Assemble bearing collar with flat side of $50-51 \mathrm{~mm}$ collar against bearing. Collar must be slightly smaller than O.D. of bearing and must be flat to support inner and outer race equally. DO NOT pull or press on inner race of ball bearings or bearing will be permanently damaged! Assemble right side of tool as shown and pull bearing into hub until fully seated.

Bearing installation tool set: PV-43515

NOTE: Use of this special tool is shown with rear
wheel bearing installation in Chapter 13.
4. Install bearing spacer.
5. Place new right wheel bearing onto wheel with markings facing out.
6. Install flat side of another $50-51 \mathrm{~mm}$ bearing collar against right bearing so both races are supported.
7. Pull bearing in to right side of wheel until seated against spacer.
8. Remove tool. Check that spacer is centered with bearings. If not, center it by inserting front axie. Repeat Step 7 to fully seat bearing on spacer.
9. Bearings must rotate smoothly after installation.
10. Install retaining ring. Be sure it is fully seated in the groove.

.
11. Install new seals using a 52 mm seal driver. (Fig. 1)
Seal Depth $0.0-1 \mathrm{~mm}(0.00-.039 \mathrm{in}$.)
Seal 1
12. Rotate inner races of bearings to check for free, smooth rotation.
13. Install discs (page 12.24). Wipe discs clean with Victory Disc Brake Cleaner.

A caution

Do not allow brake cleaner to contact painted surfaces.

A. WARNING

Grease or oil on the brake disc will increase stopping distance which may lead to loss of vehicle control or an accident.

FRONT FORK REMOVAL

1. Cover front fender to protect it from damage.
2. Remove the fairing and fairing support with console as an assembly (Chapter 3).

3. Remove bolts (A) and both front caliper.
4. Secure caliper and brake lines out of the way and support securely.

A. CAUTION

Do not twist the brake hose or brake line. Do not allow caliper to hang from the brake hose. Secure caliper in such a way to avoid hose damage.
5. Remove front wheel (page 12.23).
6. Remove front fender.
7. If triple clamp will be removed, remove front brake line manifold from lower triple clamp.

8. Loosen upper triple clamp pinch bolt(s) (C) for both left and right fork tubes.

9. Loosen lower triple clamp pinch bolts (C) evenly, 1/4 turn at a time until loose.

10. Slide fork legs down and out of triple clamps.

FRONT FORK TUBE INSTALLATION
See "FORK TUBE INSTALLATION STEPS: CROSS ROADS \& CROSS COUNTRY" on page 12.10.

FRONT FORK DISASSEMBLY

A. WARNING

Springs are compressed during this procedure. Wear a face shield to reduce the chance of injury.

NOTE: Also refer to Front Fork Assembly View on page 12.12.

1. Clean fork tubes thoroughly before disassembly.
2. Loosen fork cap and unscrew outer fork tube. Slide outer tube down to expose spacer. Keep fork upright.

3. Secure fork spring compressor (PV-49463) vertically in a vise with drive bolt (A) UP and support peg (B) at the bottom.

FORK SPRING REMOVAL

4. Place fork leg in spring compressor tool. Be sure hole in bottom of fork slider is over peg on bottom of tool.
5. Turn drive bolt to adjust tool to proper length, so gaps in upper spring coils are approximately aligned with pegs.
6. Turn thumb screws (C) inward until retaining slot on end of screw aligns with spring. Push spring onto stationary peg, then onto adjustable pegs until spring coils are captive.

A. WARNING

Wear eye / face protection. Fork components are under spring pressure. Use hand tools only on spring compressor tool to apply and release spring pressure.
7. Turn drive bolt (D) of tool to compress spring just enough to hold fork in position and expose jam nut.
8. Hold jam nut with open end wrench and remove cap.

TUBE DISASSEMBLY (cont.)

9. Remove nut from cartridge shaft. NOTE: Nut can be removed later if it is not free on the shaft.

10. Slowly release all spring pressure and remove spacer.

11. Remove upper spring.

12. Remove fork leg from tool, lifting both inner and outer tubes together.
NOTE: DO NOT lift by outer tube only. Oil will spill if outer tube slides too far up inner tube.
13. Pour fork oil out of tube and remove lower spring with lower spacer. Move cartridge shaft through complete stroke several times to drain cartridge until damping is gone.

14. Lower spring has small diameter wire and the coils are closely spaced. The upper spring has heavier wire and the coils spacing is wider.

15. Proceed to Fork Seal Removal / Tube Disassembly.

To change fork oil only, proceed to Fork Oil Filling / Level Setting (page 12.34).

FORK SEAL REMOVAL / TUBE DISASSEMBLY

NOTE: Replace dust seal and fork seal upon assembly.

SEAL REMOVAL:

1. Separate tubes. Remove dust seal (by hand) or protect the tube and carefully pry to remove.

2. Remove seal retaining ring. Do not scratch tube.

3. Protect surface of outer tube. Carefully pry seal from outer tube. Do not scratch seal bore. Remove seal backing washer from outer tube.

BUSHING INSPECTION / REPLACEMENT

1. Inspect bearing surface of bushings. Replace bushing if bronze material appears on more than $1 / 4$ (25%) of the entire anti-friction surface coating.

NOTE: Use a light to visually inspect bushing inside the outer fork tube. Replace tube assembly if upper bushing is worn,

CARTRIDGE REMOVAL

WARNING

DO NOT disassemble the cartridge. If damaged or worn, it must be replaced as an assembly.

1. Cartridge removal is not required for fork oil change or for seal replacement. To clean cartridge, add clean fork oil to inner tube and pump damper rod to flush cartridge. Discard oil.

If cartridge removal is required proceed as follows:

2. Hold cartridge with holder PV-49452 using castellated end of tool (octagonal end out).

3. Remove cartridge screw and sealing washer using an extended 8 mm hex socket.

4. Remove cartridge from inner tube.

FRONT FORK INSPECTION

1. Measure free length (A) of both upper and lower fork spring and compare to specifications on page 12.3.

2. Inspect inner fork tube for scoring, heavy scratches, dents due to rocks or other road debris, or excessive wear. Replace tube if worn or damaged.
3. Place fork tube in V-blocks or truing stand and measure runout. Replace tube if runout exceeds service limit listed on page 12.3.

WARNING

Do not attempt to straighten bent fork tubes. Doing so will weaken the structural integrity of the forks and make the motorcycle unsafe to operate.

FRONT FORK INSPECTION (Cont.)
4. DO NOT loosen or remove set screw (B).

A. warning

DO NOT disassemble the inner fork tube. If damaged or worn, the inner fork tube / lower casting must be replaced as an assembly.

5. Inspect outer tube for dents or other damage. Look for cracks in the tube, especially in the clamping zone. Assemble inner and outer fork tube and move inner tube through complete travel range. Check for resistance or binding in suspect area of outer tube. Replace outer tube if binding or resistance is evident, or if tube is cracked.
6. Inspect cartridge by moving shaft through travel range. If binding is evident, replace the assembly.

FRONT FORK TUBE ASSEMBLY

Also refer to fork assembly view (page 12.12).

1. Be sure screw threads in bottom of cartridge are clean and not damaged.
2. Place cartridge assembly into inner fork tube. Hold cartridge with PV-49452.

3. Install a new cartridge screw (A) and new sealing washer (B).

4. Torque cartridge screw. $\mathbf{2 0 - 2 6 ~ N m ~ (1 4 . 8 - 1 9 . 0 ~ l b - f t) . ~}$
5. To prevent seal damage, install seal guide (C) over end of fork tube as shown lubricate surface of guide.
6. Carefully install a new dust seal (D) (external spring faces down) and slide it over seal guide.
7. Set new retaining ring (E) on dust seal.
8. Lubricate and install a new fork seal (F) with marks facing dust seal and retaining ring.

9. Remove seal guide from inner tube and install seal backing washer (G) against seal. Machined face (flattest edge) should face UP (away from seal).

NOTE: If lower tube bushing was removed from the outer tube for replacement, slide the new bushing onto the inner tube after backing washer is installed.

8. Lubricate lower bushing with fork oil. Assemble the outer tube to the inner tube.

If lower bushing was not removed go to Step 10.
9. Start the lower bushing into the outer fork tube and slide the backing washer against it. Use the seal driver to tap the bushing into the outer tube until fully seated.
10. Lubricate outer surface of seal with fork oil.
11. Drive seal into outer tube with large side of seal driver until fully seated (below retaining ring groove).

12. Install retaining ring (H) into groove of fork tube. Be sure entire retaining ring is seated in groove.

13. Wipe any excess oil from seal cavity and press dust seal in (by hand) until fully seated in outer tube.

FORK OIL FILLING / LEVEL SETTING

1. Slide tubes together lightly to bottom of travel range.

2. Tip fork leg at an angle to reduce bubbles when adding fork oil.

ADD: About 500 cc of P/N 2877421 fork oil.

3. Slowly add recommended fork oil until holes near the top of the outer tube are covered by oil. (The holes are located about 35 mm ($11 / 2$ inches) below the top of the outer tube).

NOTE: The oil quantity slightly exceeds fork capacity. Final fork oil level must be adjusted correctly as outlined later.
4. Set fork leg upright.
5. Lift outer tube up about $100-125 \mathrm{~mm}$ ($4-5$ inches) from fully compressed position.

6. Seal top of tube firmly with your hand and push downward to build air pressure in tube. Hold for 1015 seconds to force trapped air into the oil. Allow a few minutes for air to rise to the top of the oil in tube.

7. Bleed cartridge by moving shaft up and down to purge air. Begin with small strokes, increasing stroke length until all air is removed and damping is smooth and consistent.

OIL LEVEL ADJUSTMENT

8. Slowly compress fork until it stops with dust seal against casting (at bottom of travel).

9. Insert tool into fork with plate squarely seated on top of tube. Be sure fork is upright, fully compressed, and cartridge rod is at bottom of travel.
10. Draw excess oil out to set proper oil level.

11. Adjust fork oil level tool (C) to specified level:

FORK OIL LEVEL:

- Springs and spacers removed
- Tube upright and level
- Cartridge rod at bottom of travel

SPECIFICATION: 106 mm ($4.17^{\prime \prime}$) $+/-1 \mathrm{~mm}$ (. $040^{\prime \prime}$)

FORK SPRING INSTALLATION / FINAL ASSEMBLY

WARNING

Springs are compressed during this procedure.

 Wear a face shield to reduce the chance of injury.1. Set axle end of fork tube in spring compressor.
2. Install lower spring (spring is non-directional).
3. Install lower spacer.
4. Install upper spring (A) (spring is non-directional).

5. Engage all 3 pins (B) of compressor tool with coils of fork spring as done for disassembly.
6. Screw cartridge rod extension tool (C) onto cartridge rod and pull cartridge up to top of travel range.
7. Compress spring. Guide damper rod with extension tool while spring is being compressed.

8. Hold damper rod up and remove cartridge shaft tool.
9. Install top spacer on spring.
10. Install nut with flattest surface facing up.

11. Screw nut onto cartridge rod at least 17 mm to ensure cap threads will be fully engaged when installed.

12. Install a new O-ring on fork cap and screw cap onto cartridge rod until bottomed. A gap should exist between cap and nut when cap is bottomed.

13. Screw nut upward until it contacts the cap.
14. Tighten nut against cap. Hold nut and torque cap to 13$16 \mathrm{Nm}(9.5-12.0 \mathrm{lb}-\mathrm{ft})$.

15. Screw cap into outer tube and torque to specification: $15-30 \mathrm{Nm}$ (11-22 lb-ft).

16. Wipe fork clean to remove all oil before installing in triple clamp (page 12.10).

TRIPLE CLAMP REMOVAL

1. Remove windshield (Cross Roads) or front fairing assembly (Cross Country).
2. Remove speedometer from top triple clamp (Cross Roads).
3. Cut tie straps (A) on handlebars.
4. Loosen crown nut (B).
5. Remove headlamp cover screws (C, both sides) and cover (Cross Roads).

6. Remove fuel tank (page 5.15) or cover the tank to protect it tank from damage from brake fluid, loose parts, or handlebar switches (fork stop will not function with fork tubes removed).
7. Disconnect clutch cable at handlebar.
8. Disconnect switch wiring inside headlamp.
9. Remove throttle cables from throttle reel bracket and from throttle reel. Pull cables through top triple clamp.
10. Securely support the vehicle with front wheel elevated.

WARNING

Care should be taken to be sure the motorcycle will not tip or fall while elevated. Severe personal injury or death could occur if the motorcycle tips or falls.
11. Remove front wheel (page 12.23) and fender (page 12.8).
12. Remove fork tubes (page 12.26).
13. Remove brake line manifold from lower triple clamp.

14. Remove headlamp housing by removing nut (D) from lower triple clamp.

15. Loosen crown nut (E) on upper triple clamp (30 mm socket).
16. Remove brake line from front master cylinder. Cover end of line and master cylinder with a clean, lint-free cloth to capture any spilled brake fluid.
17. Pull brake line through top triple clamp (do not kink the brake line) and temporarily re-connect it to the master cylinder.
18. Slide upper triple clamp off steering stem with spacer (F).
19. Remove stem adjuster nut (G) with Victory spanner socket (PV-43508). Support lower triple clamp while removing the adjuster nut.

20. Remove upper steering head roller bearing from the frame.
21. Remove lower triple clamp / steering stem with bearing.

STEERING HEAD BEARING INSPECTION (TRIPLE CLAMP REMOVED)

Refer to page 2.32 for inspection if front end is assembled.

1. Inspect lower bearing race for pitting, dents, or signs of wear on the bearing surface. Inspect roller cage for cracks or damage. Replace bearing and race as an assembly if any of the above is evident.
2. Inspect upper bearing for smooth rotation and minimal movement between the inner and outer race. Replace bearing if not smooth or if ANY movement can be detected between the inner and outer race.

TRIPLE CLAMP INSTALLATION

1. Apply Victory All Purpose grease to lower bearing and to bearing surface of lower race.
2. Install lower triple clamp / steering stem into frame.
3. Install upper bearing (A) onto stem and push it down until seated in upper bearing race of frame.
4. Screw adjuster nut (B) (shoulder side down) onto the stem and hand tighten.
5. Turn triple clamps fully to the right to place lower triple clamp against the fork stop.
6. Torque stem nut to 39 Nm ($29 \mathrm{lb}-\mathrm{ft}$) using Victory spanner socket PV-43508.
7. Turn lower triple clamp from lock to lock five times.
8. Turn lower triple clamp to the FULL LEFT position against the fork stop and hold it in position.
9. Place a mark on the frame in alignment with one of the slots (C) on the steering stem nut for reference later.
10. Loosen adjuster nut 90 degrees ($1 / 4$ turn) so the reference mark on frame (from Step 9) is aligned with the next one of the four slots on the stem nut.
11. Set upper triple clamp in place on stem. Install spacer (D) and crown nut (E).

FRONT SUSPENSION / CONTROLS

20. Route throttle cables and right handlebar switch wiring through right side opening in top triple clamp. Throttle cables route between handlebar and brake line, crossing over the top of the brake line at the bottom of handlebars as shown below.
21. Route left handlebar switch wiring through opening in left side of top triple clamp.

22. Route clutch cable behind other cables and wires, across steering head and up through left opening in top triple clamp to clutch lever perch.

23. Secure brake line, cables and switch wiring firmly to the handlebars on both left and right sides with new tie strap through dart (G) on handlebars. Place another new strap around cables and wiring at the bottom of the handlebars (H). This strap secures cables and wiring only - do not secure the strap to the handlebars.

24. Install a new tie strap in the dart at the front right side of steering head. Loosely bundle the clutch cable with the throttle cables (routed on top of clutch cable) as shown below. DO NOT pull this tie strap tight. The cables must be able to move freely in this strap.

25. Refer to illustrations on page 12.4-12.12 to reassemble any remaining parts. Refer to Chapter 5 to install fuel tank.
26. When all parts are assembled, verify all fasteners are installed and properly torqued.
27. Adjust clutch and throttle cable free play and operation as outlined in Chapter 2.

STEERING HEAD BEARING REPLACEMENT

Lower Race Removal:

1. Drive lower bearing race out of frame with a long pin punch through the top steering head opening. Tap alternately on opposite sides to keep the bearing race moving straight out of the steering head.

Lower Race Installation:

1. Clean the bore in the steering head thoroughly.
2. Wipe a light film of Victory all purpose grease on the outer surface of the new bearing race and on the surface of the bearing bore in the steering head.
3. Select an arbor that is slightly smaller than the outside diameter of the new bearing race.

4. Drive new race into steering head evenly until fully seated.
5. Wipe any grease from bearing surface and surrounding area, then apply new Victory All Purpose Grease liberally to bearing surface of outer race.

Lower Bearing Removal:

1. Place level blocking on the table of a hydraulic press.
2. Place lower triple clamp on blocking with stem upright.
3. Move blocks inward so lower triple clamp is supported as close as possible to the base of the steering stem, leaving clearance (A) for the stem to pass between the support blocks when pressed in Step 4.
4. Place an aluminum spacer with a minimum thickness of $1 / 2$ inch (12 mm) (B) between press ram and threaded end of steering stem to prevent thread damage.
5. Place soft metal shims as required between press plates and triple clamp so clamp is fully supported and stable.

6. The stem may fall when pressed out of the triple clamp. Place shop towels in a wood or cardboard box under the press area to prevent damage to threads of stem.

WARNING

A press force of 1000 pounds (454 kg) or greater is required for stem and bearing removal. Be sure all protective guards or shields are in place before you begin the press operation.
7. Be sure a protective shield or cage door is in place and secured before pressing the stem.
8. Move press ram into position firmly against the spacer to be sure the assembly is stable, then press the stem downward until bearing is presses off the stem.
9. Remove old bearing from stem and discard.

Lower Bearing Installation:

A bearing press sleeve with the specifications listed below is required for bearing installation.

Material: Standard Steel Pipe (Commercially Available) Ends smooth, square, and de-burred.

Outside Diameter: 1.5 ln . (38 mm)
Inside Diameter: 1.25 ln . (32 mm)
Length: 10.0 In . (255 mm)
Wall Thickness: $1 / 8 \mathrm{in}$. $(3.2 \mathrm{~mm})$

1. Clean the press surfaces (C) of stem and triple clamp and apply a thin film of Victory All Purpose Grease (2872187).
2. Be sure stop ring (D) is in place on the stem and fully seated in the groove.

3. Place stem through triple clamp.
4. Slide a new bearing over the stem with sealed edge toward triple clamp.
5. Place bearing press sleeve (E) over stem. Invert the assembly and center it on the press plate and the ram.

6. Place a suitable arbor (F) between the press ram and the end of the steering stem. The arbor must be slightly smaller than the O.D. of the stem base.
7. Be sure press sleeve is centered on the inner bearing race and does not contact the bearing cage (G).

8. Close the cage or place the protective guard over the press.

9. Press the stem and bearing assembly until fully seated.
10. After the press operation is completed, release ram pressure.
11. Inspect the stop ring (H) to be sure it is fully seated against the triple clamp surface.

12. Install triple clamps. See "TRIPLE CLAMP INSTALLATION ${ }^{*}$ on page 12.40 .

STEERING HEAD BEARING ADJUSTMENT
See "STEERING HEAD ADJUSTMENT / TOP TRIPLE CLAMP: CROSS ROADS / CROSS COUNTRY" on page 12.11. Or refer to the triple clamp installation procedure on page 12.40.

TROUBLESHOOTING

TROUBLESHOOTING

PROBLEM	POSSIBLE CAUSE	REPAIR RECOMMENDED
Heavy Steering	Steering Stem Nut Over Tightened	Torque to specification
	Damaged Steering Stem Bearings or Races	Replace
	Bent Steering Stem	Replace
	Front Tire Damaged or Worn	Replace
	Low Tire Pressure	Inflate to specification
Pulls to One Side or Wanders	Damaged Steering Stem Bearings or Races	Replace
	Steering Stem Nut Over Tightened or Under Tightened	Torque to specification
	Low Tire Pressure	Inflate to specification
	Rear Wheel Not Aligned Correctly	Align
	Bent Front Axle	Replace
	Damaged or Excessively Worn Front Tire / Incorrect Tire	Replace
	Damaged Wheel Bearings	Replace
	Damaged Swing Arm Bearings	Replace
	Loose Swing Arm Pivot Nut	Torque to specification
	Bent Frame or Swingarm	Replace
Handlebars Oscillate (Wobble)	Bent Front Axle	Replace
	Wheel Has Excessive Runout	Spoke: True or Replace (Billet)
	Tire Mounted Incorrectly	Check Mounting and Balance
	Damaged Tire / Worn Tire	Replace
	Loose Steering Stem Nut	Torque to specification
	Incorrect Tire	Replace
	Incorrect Tire Pressure	Correct
Noise Coming From Front Suspension	Worn Fork Bushings	Rebuild Forks
	Low Fork Fluid	Determine Cause/Replace Fork Oil
	Loose Fasteners	Torque to specification
	Loose Steering Stem Bearings	Determine Cause/Correct
Front Wheel Oscillates (Wobbles)	Bent Front Rim	Replace
	Damaged Front Wheel Bearings	Replace
	Damaged or Incorrect Tire	Replace
Front Wheel Oscillates (Wobbles)	Loose Axle or Axle Pinch Bolts	Torque to specification
	Fork Tube Height Unequal (L\&R)	Install Correctly
	Fork Oil Level Unequal	Set Correctly
	Fork Spring Free Length Different Between Right \& Left	Replace
	Wheel Assembly Out-of-Balance	Balance
	Low Tire Pressure	Inflate to specification

TROUBLESHOOTING (cont.)

PROBLEM	POSSIBLE CAUSE	REPAIR RECOMMENDED
Front Suspension Too Soft	Weak Fork Springs	Replace
	Low Fork Oil Level	Determine Cause/Replace Fork Oil
	Wrong Weight Fork Oil	Replace
	Contaminated and/or Deteriorated Fork Oil	Replace
	Low Tire Pressure	Set Correctly
Front Suspension Too Hard	Tire Pressure Too High	Set Correctly
	Bent Fork Tubes	Replace
	Wrong Weight Fork Oil	Replace
	Too Much Fork Oil	Set Correctly
	Plugged Oil Passages	Rebuild Front Forks
	Damaged Sliders	Replace
	Forks Binding, Incorrect Assembly Front Fender and/or Front Wheel	Correct
Wheel Turns Hard	Damaged Wheel Bearings	Replace
	Front Axle Bent	Replace
	Brake Dragging (Hydraulic or Mechanical Problem)	Repair as Necessary
	Brake Dragging (Bent Disc)	Replace
	Improper Assembly After Repairs	Correct as Necessary

CHAPTER 13
 REAR WHEEL \& SUSPENSION

GENERAL INFORMATION 13.2
SPECIAL TOOLS 13.2
SPECIFICATIONS 13.3
ASSEMBLY VIEWS \& TORQUE 13.4
ASSEMBLY VIEW - REAR AXLE \& ADJUSTERS 13.4
ASSEMBLY VIEW - SWINGARM \& SUSPENSION 13.5
REAR WHEEL - CAST 13.6
REAR WHEEL - BILLET 13.7
REAR WHEEL SERVICE
REAR WHEEL REMOVAL 13.813.8
REAR AXLE INSPECTION 13.9
REAR WHEEL INSPECTION 13.9
REAR WHEEL BEARING INSPECTION 13.10
WHEEL BEARING REMOVAL (TYPICAL) 13.10
WHEEL BEARING INSTALLATION (TYPICAL) 13.12
BRAKE DISC REMOVAL 13.14
BRAKE DISC INSTALLATION 13.14
REAR SPROCKET REMOVAL 13.14
REAR SPROCKET INSTALLATION 13.14
REAR WHEEL INSTALLATION 13.15
REAR SHOCK13.17
REAR SHOCK SERVICE DATA 13.17
REAR SHOCK REMOVAL 13.18
REAR SHOCK AND ROCKER INSPECTION 13.19
SHOCK ABSORBER INSTALLATION 13.20
SWINGARM SERVICE
SWING ARM REMOVAL 13.2213.22
SWING ARM BUSHINGS / BEARING REPLACEMENT 13.24
SWING ARM INSTALLATION 13.25
TROUBLESHOOTING13.26

GENERAL INFORMATION

WARNINGS AND PRECAUTIONS

> | A WARNING |
| :--- |
| This motorcycle was produced with the designated tires |
| as original equipment. The testing to ensure stability |
| and superior handling was done using the OEM tires. |
| Using non-OEM tires could result in poor motorcycle |
| stability and handling, which can lead to a crash |
| resulting in serious injury or death. |
| Use only the recommended tires inflated to the |
| recommended tire pressures. |

Tubeless tires are used on Victory Cross Roads ${ }^{\text {M }}$ and Cross Country ${ }^{\text {TM }}$ models. Operating the motorcycle with damaged rims creates a safety hazard including air pressure loss, steering imbalance and/or reduced steering control. Do not attempt to repair or straighten damaged rims.

Always use genuine Victory parts or equivalent so that quality is not compromised. The use of tire valves and valve cores other than original equipment replacement Victory parts could cause tire deflation which may lead to loss of control, resulting in injury or death. Do not allow any motorcycle to leave your service area without tire valve caps securely installed.

- The rear shock absorber is a sealed unit and cannot be re-built.
- Refer to Chapter 2 for maintenance of rear wheel \& suspension components, and suspension ride height adjustment.
- Refer to Chapter 15 for brake system service.
- Refer to Chapter 14 for tire removal, repair, \& balancing.

SPECIAL TOOLS

SPECIAL TOOLS

See page 1.17 for tool ordering information.

Wheel Bearing / Stem Bearing Race Installation Set	PV-43515
Platform Jack or Hoist	Commercially available
Blind Bearing Remover Set (for wheel bearings)	PV-43551
Lower Shock Spherical Bearing Tool	PV-49060
Victory Air Pump \& Gauge (Rear Shock Air Pressure)	2876654 or

SPECIFICATIONS

SPECIFICATIONS - REAR WHEEL AND SUSPENSION

SPECIFICATIONS		
Item	Standard	Service Limit
Axle Runout	-	. 20 mm (.008")
Rear Shock Absorber	Single, Air Adjustable Shock (Sealed unit not serviceable)	DO NOT EXCEED 72 PSI operating pressure.
Rear Tire Size / Type	Dunlop Elite $3-180 / 60 \mathrm{R} 16$ M/C 80H Radial	-
Rear Wheel Runout (Cast \& Billet Type)	.80 mm (. 030 inch)	2.0 mm (.080 ${ }^{\circ}$
	. 80 mm (. 030 inch)	2.0 mm (.080 ${ }^{\circ}$)
Rear Wheel Size / Type	$5.0 \times 16^{\prime \prime}$	--
Rear Wheel Travel	4.7 in. (12 cm)	-
Shock Free Length (Eye to eye center)	325.3 mm (12.8 inch) $+/-3 \mathrm{~mm}$ (. 120 in)	--
Suspension Ride Height Measurement	Perform Air Pressure Adjustment For Rider Weight and Load with motorcycle on side stand. (See Chapter 2)	DO NOT EXCEED 72 PSI operating pressure.
Swing Arm Pivot Shaft Runout	Not Applicable	20 mm (.008")
Swing Arm Pivot Shaft O.D.	16.20-16.25 mm (.638-.640 $)$	16.08 mm (. $633^{\prime \prime}$)
Tire Pressure	52 mm	-
Wheel bearing O.D.	52 mm	--
Wheel bearing I.D.	20 mm	--
Wheel bearing spacer length	$171.3-171.5 \mathrm{~mm}$ ($6.744-6.752^{\prime \prime}$)	Less than 171.3 mm (6.744")
TORQUE SPECIFICATIONS (Also see assembly views page 13.4 - page 13.7)		
Brake Disc Screws	$30.0 \mathrm{Nm}(22 \mathrm{lb}-\mathrm{ft})$	Install NEW screws if loosened or removed. New screws have special preapplied locking agent.
Hub Bolts (Billet Wheels Only)	Victory Billet Wheels: 75.0 Nm ($55 \mathrm{lb}-\mathrm{ft}$) Ness Billet Wheels: 88.0 Nm (65 lb -ft)	Clean hub threads, bolt threads, and mating surfaces of hub to remove grease, oil, and old locking agent. Apply Loctite 262 (Red) to bolt threads.
Rear Axle Nut	88.1 Nm ($65 \mathrm{lb}-\mathrm{ft}$)	--
Rear Axle Adjuster Nut	10.8 Nm ($8 \mathrm{lb}-\mathrm{ft}$)	--
Rocker Arm Pivot Shaft Retaining Bolts	24.5 Nm ($18 \mathrm{lb}-\mathrm{ft}$)	-*
Sprocket Bolts	95.0 Nm ($70 \mathrm{lb}-\mathrm{ft}$)	Torque in star pattern
Swing Arm Nut, Left Side	2.7 Nm ($24 \mathrm{lb}-\mathrm{in}$)	Apply Loctite 262 (Red)
Swing Arm Nut, Right Side	$88.1 \mathrm{Nm}(65 \mathrm{lb}-\mathrm{ft})$	--
Shock Mount Bolt (Lower)	$81.4 \mathrm{Nm}(60 \mathrm{lb}-\mathrm{ft})$	--
Shock Mount Bolt (Upper)	$73.2 \mathrm{Nm}(54 \mathrm{lb}-\mathrm{ft})$	--
Shock Pushrod Bolt (Lower)	$81.4 \mathrm{Nm}(60 \mathrm{lb}-\mathrm{ft})$	-*
Shock Pushrod Bolt (Upper)	73.2 Nm ($54 \mathrm{lb}-\mathrm{ft}$)	-

ASSEMBLY VIEWS \& TORQUE

ASSEMBLY VIEW - REAR AXLE \& ADJUSTERS

13.4

ASSEMBLY VIEW - SWINGARM \& SUSPENSION

REAR WHEEL - CAST

13.6

REAR WHEEL - BILLET

REAR WHEEL SERVICE

REAR WHEEL REMOVAL

WARNING

Rear wheel removal involves supporting the machine with the rear end elevated. Take precautions so that the motorcycle is securely supported when the rear tire is off the ground. Severe personal injury or death can occur if the motorcycle tips or falls.

1. Secure motorcycle in a stand with straps (Fig. 1).
2. Place a platform jack (A) under the engine. Elevate the motorcycle enough to take the weight off the rear wheel, but still leave the wheel touching the platform.

NOTE: Muffler removal is not required.

3. Remove the lower shock bolt and lower pushrod bolts (B) from the swingarm.

4. Raise the motorcycle high enough to gain access to the axie nut. Loosen axie nut to the end of the shaft.
5. Tap axle to the right until retaining plate is clear of the swingarm and remove it.
6. Tap axle from right to left and pull axle out the left side of the swingarm.
NOTE: Axle adjuster nuts do not have to be loosened or removed, however, belt tension and alignment must be inspected after assembly.
7. Elevate the motorcycle until the swingarm shock mount is raised a minimum of 12 inches (305 mm).

8. Remove the drive belt-side wheel spacer and disengage drive belt from rear sprocket.
9. Remove rear caliper from swing arm.

A. caution

Do not allow rear brake caliper brake line to hang or twist. Brake line damage may result.
10. Secure brake caliper to swing arm with tie strap or support it so it does not hang by the brake line.
11. Remove rear wheel from left side of the motorcycle.

NOTE: Do not apply rear brake pedal once the brake caliper has been removed.

REAR AXLE INSPECTION

1. Place rear axie in V-blocks and measure runout. Compare to service limit on page 13.3
2. Axle diameter should be measured on bearing surfaces at (D).

REAR WHEEL INSPECTION

NOTE: Wheel bearings must be in good condition.

1. Set up a dial indicator to measure axial and radial runout of the wheel. Refer to Chapter 14 for procedure. Compare measurements to service limits.
2. Visually inspect wheel for cracks or other damage.
3. Replace wheel if it fails visual or measured inspection.

REAR WHEEL BEARING INSPECTION

NOTE: If possible, also inspect wheel bearings before removing the wheel from the vehicle (Chapter 2). Do not remove bearings from wheel to inspect. Bearings cannot be reinstalled. Replace both bearings if one or both fail inspection, or if either bearing was removed.

1. Visually inspect integral bearing seal for damage.
2. Inspect bearing fit in wheel hub. Outer race of bearing must fit tightly in bore.
3. Slide axle into wheel. Check for smooth rotation and tight fit.

NOTE: Due to extremely close tolerances, the bearings must be inspected visually, and by feel. Look for signs of discoloration, scoring, galling, or contamination from moisture or dirt. Replace bearings if any of the above are present. Turn the inner race of the bearings. The bearings should turn smoothly and quietly. The inner race should be firm with minimal side to side movement and no detectable up and down movement.

WHEEL BEARING REMOVAL (Typical)

A. CAUTION

Do not reuse bearings that have been removed.
NOTE: These instructions depict typical procedures to use the wheel bearing removal and installation tools. Also refer to instructions included with tool.

1. Remove brake disc (page 13.14).

2. Remove sprocket (page 13.14).

WHEEL BEARING REMOVAL - TYPICAL (Cont.)
3. Protect hub. Pry seals out of hub on both sides.

4. Remove snap ring from disc side.

5. Install bearing remover element into bearing. Tighten bearing remover until firm. Do not over-tighten or tool may be damaged.

6. Remove bearing by tightening lower nut.

7. Remove spacer.

8. Extract or drive the opposite side bearing.

WHEEL BEARING INSTALLATION (TYPICAL)

1. Clean inside of wheel hub and bearing spacer. Replace spacer if worn beyond the service limit.

Standard: 171.30-171.50 mm (6.744-6.752") Service Limit: Less than 171.30 mm ($6.744^{\prime \prime}$)

Cast and Billet

Wheel Bearing Installation Set PV-43515

2. Slide threaded rod from PV-43515 through wheel hub. Place new wheel bearing (A) into left (disc) side of wheel with markings facing out (toward outside of hub).
3. Assemble tool with flat side of 51 mm wheel bearing collar (B) against wheel bearing. This tool must be slightly smaller than O.D. of bearing and must be flat to support both inner and outer race equally. DO NOT pull or press on inner race of ball bearings or bearing will be permanently damaged!
4. Install tool bearing (C), washer (D), and nut (E) on threaded shaft.

5. Install the other 51 mm bearing tool (F) in bearing bore on right side of hub with flat washer and nut. Pull left bearing into hub by tightening nut on left side of tool until left bearing is fully seated in hub.

NOTE: DO NOT install retaining ring at this time.
6. Turn wheel over and install bearing spacer (G). Be sure spacer is centered on bearing.

7. Assemble tool through left side with backing disc (or bearing tool) flat against left bearing. Be sure the tool supports both inner and outer race.

8. Place new wheel bearing (H) on threaded shaft (markings out) and start it squarely in the hub.
9. Install 51 mm wheel bearing installation tool with flat side against bearing, followed by tool bearing, flat washer, and nut.

10. Keep the wheel positioned as shown to keep spacer centered during installation of right bearing.

11. Pull bearing in to right side of wheel until seated against spacer.
12. Remove tool and check to be sure that spacer is centered and trapped firmly between bearing inner races. If not centered or not trapped, center it using the rear wheel axle and repeat Steps 9-11 to fully seat bearing against spacer.
13. Install snap ring. Be sure it is fully seated in groove.

14. Rotate inner races of bearings to check for free, smooth rotation.
15. Install new seals using a 52 mm seal driver.

16. Install brake disc (page 13.14). Clean discs with Victory Disc Brake Cleaner.

A. CAUTION

Do not allow brake cleaner to contact painted surfaces.

A. WARNING

Grease or oil on the brake disc or pads will increase stopping distance which could cause a loss of control or a crash.
17. Install rear sprocket (page 13.14).

BRAKE DISC REMOVAL

1. Remove rear wheel (page 13.8).
2. Position wheel with brake disc facing up. Support wheel so as not to damage the belt sprocket.

3. Remove and discard brake disc screws (A).
4. Remove brake disc from wheel.

BRAKE DISC INSTALLATION

1. Clean bolt hole threads with Loctite Primer N .
2. Clean mating surfaces of disc and hub.
3. Install brake disc on hub with part number to outside.
4. Install new brake disc screws and torque to specification. Do not re-use brake disc screws. New screws have a special pre-applied locking agent.
5. Install rear wheel (page 13.15).

REAR SPROCKET REMOVAL

1. Securely support rear of motorcycle off floor.
2. Remove rear wheel (page 13.8).
3. Remove sprocket bolts.
4. Remove rear sprocket from wheel.

REAR SPROCKET INSTALLATION

1. Clean bolt threads in hub to remove all grease or oil residue.
2. Clean mating surfaces of wheel and sprocket.
3. Tighten nuts in a star pattern to specified torque.
4. Install sprocket and new sprocket bolts.
5. Torque bolts in a star pattern to specified torque.
6. Install rear wheel (page 13.15).

REAR WHEEL INSTALLATION

1. Place rear wheel into position underneath the wheel well.
2. Install the rear wheel spacers in their correct locations. Long spacer on sprocket side and short spacer on disc side of wheel.
3. Verify that the rear sprocket is aligned into the belt guard and install the drive belt. Verify the teeth are engaged completely on both the front and rear sprockets.
4. Prepare the caliper for installation by slightly spreading the brake pads. Place the caliper into position on the brake disc. Verify caliper bracket tab (A) inserts into the slot on the left inside of swingarm once you start to lower it into position.

5. Apply a thin film of grease to axle surface.
6. Insert axle through left side swingarm and axle adjuster, through caliper bracket, left spacer, and into wheel. Push axle in through entire wheel assembly, right wheel spacer and right axle adjuster and right side of swingarm until retaining plate can be installed in slot of axle (wheel alignment marks on plate facing OUT).
7. Tap or pull axle back toward left side until plate is engaged in swingarm. Install washer and axle nut on left side of axle (if removed).

8. Verify the tab of caliper bracket is still engaged in slot on left side of swingarm.
9. Tighten axle nut until seated and back off one full turn. Tap axle forward on each side to be sure adjuster nuts are seated against swingarm.
10. Torque rear axle nut to $88 \mathrm{Nm}(65 \mathrm{lb}-\mathrm{ft})$.
11. Inspect lower shock mount spherical bearing and spacers. Inspect lower pushrod bushing. Replace worn parts using bushing / bearing tool PV-49060.
12. Lower the motorcycle with the platform jack until the shock eyelet (arrow) is aligned with the spherical bearing in the swingarm. Install spacers on each side of spherical bearing. Align parts and install bolt with nut on the inside. Torque nut to $81.4 \mathrm{Nm}(60 \mathrm{lb}-\mathrm{ft})$.

13. Continue to lower the motorcycle with the platform jack until the lower shock pushrod eyelet is aligned with the swingarm. Install bolt with nut on the inside. Torque the nut to $81.4 \mathrm{Nm}(60 \mathrm{lb}-\mathrm{ft})$.

14. Adjust belt tension and wheel alignment (Chapter 2).
15. Apply rear brake pedal 2-3 times to re-set brake pads. firmly against the disc. You should feel firm resistance when applying pressure to the brake pedal. If pedal feels spongy, verify proper assembly of rear wheel and caliper bracket. I correctly assembled, bleed brake system as described in Chapter 15.
16. Rotate the rear wheel and check for smooth rotation without brake drag. If drag is evident, verify brake pedal clearance is within specified $1-2 \mathrm{~mm}$ range. (Ch. 15)
17. Lower the motorcycle and test drive to ensure proper operation.

REAR SHOCK

REAR SHOCK SERVICE DATA

The rear shock is not serviceable. Use dry compressed air or Victory Air Pump and Gauge (2876654 or PV-48909) to pressurize the shock. Set ride height by performing air pressure adjustment (see Chapter 2).
Do not store the shock horizontally. If left horizontal for a period of time, cycle shock at least 10 times in upright position before installation
DO NOT EXCEED 72 PSI operating pressure.
DO NOT EXCEED 110 PSI when filling.

AIR SUSPENSION ADJUSTMENT		
Set desired pressure with bike unloaded on side stand	air Pressure (psi)	
 Occupant weight (lbs)	(lita	
100	0	
125	0	
150	0	
175	0	
200	0	
225	9	
250	15	
275	25	
300	29	
325	34	
350	39	
375	45	
400	52	
425	58	
450	65	
475	70	
500	72	
MAX PRESSURE 72 PSI		

REAR SHOCK REMOVAL

A warning

Shock absorber removal involves supporting the machine with the rear end elevated. Take precautions so that the motorcycle is securely supported when the rear tire is off the ground. Severe personal injury or death can occur if the motorcycle tips or falls.

1. Secure the front tire in the wheel vise of a motorcycle table lift.
2. Remove seat, both side covers, and both saddlebags (Chapter 3).
3. Place a wide-based platform jack under rear of engine. Elevate the jack slightly until weight is removed from rear wheel.

4. Remove swingarm (page 13.22).
5. Lower the inner rear fender (A) and detach shock air line and vent hose from the clip (B).

13.18
6. Remove nut (C) and the air fitting from right sub-panel.
7. Cut tie strap (D).

8. Remove the rear rocker shaft stop bolt (E).

9. Tap rocker shaft rearward with a pin punch through the opening in the frame.
10. Remove shaft and shock assembly with rocker arm and strut attached.

REAR SHOCK AND ROCKER INSPECTION

A warning

The rear shock absorber is air pressurized and is not rebuildable. DO NOT attempt to disassemble or service the shock.

1. Inspect shock for signs of oil seepage around the shock body. If leakage is suspected replace the shock absorber assembly.
2. Inspect eyelets (A) for cracks or damage. Replace shock if either eyelet is cracked.

3. Clean shock thoroughly.
4. Inspect for corrosion, pitting, or damage. Replace shock if any of the above is evident.
5. Depressurize the shock.
6. With shock upright, cycle through entire travel range. Shock should move smoothly with consistent damping through the entire travel range, and return to the fully extended position when released. Replace shock assembly if damping is inconsistent, oil leakage has occurred, or if the damper rod does not fully extend when released.
7. Inspect shock spring for cracks or coil distortion. Measure free length and compare to specification.
8. Inspect pivot mechanism and shaft. Bearing needles should turn freely and be free of corrosion or contamination. Thrust bearings should be free of cracks or wear. Inspect surface of shaft for roughness, galling or uneven surface. Replace rocker and shaft as an assembly if either is worn or rough.

9. Assemble shock, rocker arm, and pushrod assembly. Torque upper fasteners to 73 Nm ($54 \mathrm{lb}-\mathrm{ft}$). Torque lower fasteners to $81.4 \mathrm{Nm}(60 \mathrm{lb}-\mathrm{ft})$.See page 13.5 .

2
Shock \& Pushrod To Rocker Arm:
73 Nm (54 lb-ft)

10. Inspect lower pushrod spherical bearing and spacers.
11. Inspect spherical bearings (B) and spacers (C) for wear. Replace worn parts before installing shock and pushrod. Use PV-49060 to remove and install bearings. Follow instructions provided with tool. Replacement can be performed with swingarm

NOTE: A slide hammer puller can be used to remove spherical bearings. Installation requires PV-49060.

SHOCK ABSORBER INSTALLATION

1. Grease parts with Victory All Purpose Grease (2872187) where indicated.
2. Assemble shock and strut to rocker arm and torque fasteners to specification.

3. Install front stop bolt in frame and torque to specification.

4. Lift shock / rocker assembly into position and align with shaft bore in frame.
5. Push lubricated shaft through frame and rocker until it stops against the front stop bolt. Be sure the shaft is fully seated against bolt.

6. Install the rear stop bolt and torque to specification.

7. Secure air line and vent hose in clips (A) of inner rear fender (debris flap).

8. Route air line in fender channel and secure the loop (B) in the upper detent.

9. Lift debris flap into position and engage top tab (C) in slot (D) of frame.

10. Route air line fitting between fender and frame on right side.
11. Lift bottom edge of inner fender up and push it forward until corner tabs are engaged with notches in the frame. Do not push lower tabs past the frame notches. Be sure the top tab is still properly engaged on top of rear frame opening.

12. Route the air line fitting through the hole in the right sub-panel, install nut and torque to $9.5 \mathrm{Nm}(84 \mathrm{lb}-\mathrm{in})$.
13. Install swingarm (page 13.25) and remaining parts.

SWINGARM SERVICE

SWING ARM REMOVAL

A warning

Swingarm removal involves supporting the machine with the rear end elevated. Take precautions so that the motorcycle is securely supported when the rear tire is off the ground. Severe personal injury or death can occur if the motorcycle tips or falls.

1. Secure front tire in the wheel vise of a motorcycle table lift.
2. Remove seat, both side covers, and both saddlebags (Chapter 3).
3. Place a wide-based platform jack under rear of engine. Elevate the jack slightly until weight is removed from rear wheel.

4. Loosen left muffler crossover pipe clamp and left muffler with shields attached.
5. Remove left passenger footrest bracket and remove brake line guide from swingarm.
6. Remove right muffler shield (A) and right muffler.
7. Remove rear wheel (page 13.8).
8. Loosen front exhaust head pipe flange nuts (B) and remove rear head pipe flange nuts.
9. Remove lower head pipe fasteners (C) and loosen clamp (D).

10. Remove right passenger footrest bracket fasteners (E).

11. Loosen right (driver) footrest mounting bolts to gain clearance at head pipes.

12. Pull head pipe outward and slide passenger footrest bracket off swingarm pivot shaft.
13. Remove swingarm pivot shaft nut and washer (F).

14. Push swingarm shaft out from right to left.
15. Remove swingarm.

SWING ARM BUSHINGS / BEARING REPLACEMENT

1. Remove sleeve (A) from right side of swingarm.
2. Remove seals (B) and bearing (C) from right side of swingarm.

3. Remove bushing (D) from left side of swingarm.

A. CAUTION

Do not reuse bearings that have been removed.
4. Remove snap ring (E) and drive bearings (F) out from inside to outside.

5. Support the inside left edge of the swingarm pivot on a pressing surface.

6. Grease outside surface of new bearings (F) and press into bore until seated, using a 41.5 mm drive adaptor or a suitable arbor. Press on the OUTER RACE only.
7. Install snap ring (E) and be sure it is seated properly in groove.
8. Install bushing (D) into left side of swingarm. Left side bearings are pre-lubricated. Do not apply grease to this bushing.
9. Support inside right edge of swingarm.
10. Grease surface of a new bearing (C) and press into bore until centered. Use a 31.5 mm drive adaptor or a suitable arbor.
11. Apply grease to inner lip of seals (B) and install seals flush with outside of swingarm.

12. Grease right side bearing sleeve (A) and install with a twisting motion until centered in the seals and bearing.

SWING ARM INSTALLATION

1. Clean inside of pivot shaft bore in frame (A).

2. Grease swingarm pivot shaft (B).
3. Apply Loctite 262 (Red) to threads on left end of shaft and install left side nut (C) until outer surface is even with end of shaft.
4. Install washer (D) onto shaft.
5. Place swingarm assembly with bearings, seals, and bushings installed into position on frame.
6. Install pivot shaft from left to right. Be sure right-hand sleeve (E) is in place and does not get pushed out of swingarm when shaft is installed.
7. Install right side washer (F) and nut (G) hand tight.

8. Torque LEFT side nut to $2.7 \mathrm{Nm}(24 \mathrm{lb}-\mathrm{in})$.
9. Torque RIGHT side nut to $88 \mathrm{Nm}(65 \mathrm{lb}-\mathrm{ft})$.
10. Move swingarm through travel range to be sure it pivots smoothly and freely.
11. Replace rear brake line clamp to left side of swingarm and torque screw to 8 ft . lbs. $(10.8 \mathrm{Nm})$.
12. Install shock and pushrod to swingarm. Install bolts from outside to inside and install nuts. Torque nut side of fastener to $73 \mathrm{Nm}(54 \mathrm{lb}-\mathrm{ft})$.).
13. Install rear wheel assembly (page 13.15).
14. Raise rear of motorcycle again and check to make sure that the following applies:

- The rear wheel turns freely, without any interference between the belt guard, the tire, and the swingarm.
- Brake line is properly routed and secured.
- The left and right axle adjusters are aligned properly (wheel is in alignment).
- The rear brake functions properly. It is critical that the peg on the caliper mount rides inside the channel in the swingarm. If brake pedal does not feel firm refer to Chapter 15 for brake inspection and bleeding procedure.
- All fasteners have been tightened correctly.
- There is adequate clearance between swingarm and exhaust mufflers and mounting.
- The swingarm is not loose, it doesn't wobble from side to side, and it doesn't move up and down when pushed and pulled firmly.

15. Test ride motorcycle to be sure rear suspension operates smoothly without binding or abnormal noises.
16. Adjust air pressure for rider weight and load (see Chapter 2). DO NOT EXCEED 72 PSI operating pressure.

TROUBLESHOOTING

TROUBLESHOOTING

PROBLEM	POSSIBLE CAUSE	REPAIR RECOMMENDED
Rear Wheel Feels "Loose" or Wobbles	Low tire pressure	Inflate to specification
	Worn or damaged wheel bearings	Replace wheel bearings
	Worn or damaged swing arm, rocker, pushrod, or shock bushings/bearings.	Replace bushings or bearings
	Damaged or incorrect rear tire	Replace rear tire
	Unbalanced rear wheel assembly	Balance tire/wheel
	Distorted (bent) rear wheel	Replace wheel
	Loose swing arm, axle or suspension fasteners.	Torque to specifications
Rear Suspension Too Hard	Bent / corroded shock damper rod	Replace shock
	Dry, seized, damaged, corroded suspension bushing(s) / bearing(s)	Correct as necessary
	Incorrect preload adjustment	Adjust to rider \& load
	Damaged, dry, or corroded swingarm, rocker, pushrod, or shock bushings, bearings, or shaft	Lubricate or Replace
	High tire pressure	Deflate to specification
	Drive belt adjustment too tight	Adjust drive belt tension
Rear Suspension Too Soft	Shock leaking air / oil	Replace shock / repair line leak
	Weak shock spring	Replace shock spring
	Incorrect air pressure adjustment	Adjust to rider \& load
	Excessive load placed on motorcycle	Educate rider / operator
	Low tire pressure	Inflate to specification
Rear Suspension Noisy	Loose fasteners	Torque to specifications
	Worn wheel bearings	Replace
	Worn swing arm, rocker arm, pushrod, or strut bushing / bearings	Replace
	Damaged shock absorber	Replace as necessary
	Contact between moving and stationary parts	Check all swingarm, wheel, and brake system components for contact with frame, exhaust, body, etc. Check routing and the all fasteners are in place and tight
Rear Wheel Drag (Turns Hard)	Incorrect drive belt adjustment	Adjust drive belt tension
	Tire contact with object or chassis	Determine point of contact and correct
	Bent rear axle	Replace
	Damaged wheel bearings	Replace
	Brake problem	Refer to chapter 15

CHAPTER 14 TIRES / WHEELS

GENERAL / SAFETY 14.2
WARNINGS / PRECAUTIONS 14.2
TIRE DATA 14.3
TIRE PRESSURE / LOADING 14.3
WHEEL DATA 14.3
WHEEL SPECIFICATIONS 14.3
SPECIAL TOOLS 14.3
SPECIAL TOOLS 14.3
TIRE INSPECTION 14.4
TIRE WEAR PATTERNS \& GENERAL CAUSES 14.4
OZONE CRACKING 14.4
FRONT TIRE CUPPING 14.4
TIRE CHANGING 14.5
GENERAL 14.5
TIRE REMOVAL 14.6
TIRE REMOVAL (TYPICAL) 14.6
WHEEL INSPECTION 14.7
VISUAL INSPECTION \& RUNOUT 14.7
TIRE REPAIR PRECAUTIONS 14.8
VALVE STEM
TIRE VALVE AND STEM INSPECTION. 14.814.8
VALVE STEM INSTALLATION - RUBBER 14.8
VALVE STEM INSTALLATION - METAL 14.8
TIRE INSTALLATION 14.9
TIRE MOUNTING 14.9
TIRE BALANCING 14.11
TIRE BALANCING 14.11
TROUBLESHOOTING 14.13
TROUBLESHOOTING 14.13

GENERAL / SAFETY

WARNINGS / PRECAUTIONS

A. WARNING

If a consumer wishes to replace the Original Equipment Manufacturer (OEM) tires with another brand of tire, Victory recommends contacting the tech-line department of the tire manufacturer being considered to ensure compatibility. Victory makes no other recommendation other than the OEM tires. Tires other than OEM may or may not adversely affect the handling characteristics of the motorcycle or may not have adequate clearance between tire and various parts of the motorcycle.

WARNING

Victory motorcycles are produced using the designated tires listed as original equipment. This includes field testing to ensure stability and superior handling. The use of tires other than original equipment may cause instability which can lead to a crash resulting in serious injury or death. Use only the recommended tires inflated to the recommended tire pressures.
Operating the motorcycle with damaged rims creates a safety hazard including air pressure loss, steering imbalance and/or reduced steering control. Do not attempt to repair or straighten damaged rims.
The use of tire valves and valve cores other than original equipment replacement Victory parts could cause tire deflation during driving. Always use genuine Victory parts or their equivalent. Be certain to install the valve stem caps securely. Do not allow the motorcycle to be ridden without properly installed valve stem caps.

WARNING

Do not attempt to repair tires that have:

- Punctures with a diameter of greater than $6 \mathrm{~mm}\left(0.240^{\prime \prime}\right)$.
- Cuts with a length of greater than $6 \mathrm{~mm}\left(0.240^{\prime \prime}\right)$.
- Any punctures or cuts on the sidewall of the tire.
- Tread depth of less than $1.6 \mathrm{~mm}\left(.063^{\prime \prime}\right)$ for the front tire.
- Tread depth of less than $1.6 \mathrm{~mm}\left(.063^{\prime \prime}\right)$ for the rear tire.
- Ply separation
- Tread separation
- Severe tread cupping.
- Cuts, gouges or scratches on the sealing surface of the bead.
- Flat spots on the tread.
- Bubbles, separation or any unusual damage to the inner liner of the tire.
- Chemical sealants or balance additives added to the tire.
\square
WARNING
All repairs must be made from inside the tire. Victory recommends the use of "head-type" plugs such as: Tech Tire Repair ${ }^{T M}$ Uni-Seals. Complete Tech Tire Repair ${ }^{T M}$ kits are commonly available at most automotive parts outlets.

WARNING

No form of temporary repair should ever be attempted. Secondary damage caused by a penetrating object may not be detected and tire or tube deflation may occur at a later date.

14.2

TIRES / WHEELS

A. warning

It is dangerous to ride with a worn tire. When a tire reaches the minimum tread depth listed below, replace the tire immediately.

FRONT TIRE MINIMUM TREAD DEPTH	REAR TIRE MINIMUM TREAD DEPTH
$1.6 \mathrm{~mm}\left(.063^{\prime \prime}\right)(1 / 16$ inch $)$	$1.6 \mathrm{~mm}\left(.063^{\prime \prime}\right)(1 / 16 \mathrm{inch})$

CAUTION

Two of the biggest factors contributing to premature tire wear are overloading and under-inflation. Do not deviate from the specifications for loading or inflation.

TIRE DATA

TIRE PRESSURE / LOADING

Refer to page 2.9 or to the decal on the motorcycle for tire pressure and loading information.

WHEEL DATA

WHEEL SPECIFICATIONS

Refer to Chapter 12 (Front Wheel and Suspension) or Chapter 13 (Rear Wheel and Suspension) for wheel specifications.

SPECIAL TOOLS

SPECIAL TOOLS

Rim Protectors: PV-43536

Tire Irons (for manual tire changing): Commercially available

TIRE INSPECTION

TIRE WEAR PATTERNS \& GENERAL CAUSES

WEAR PATTERNS AND GENERAL CAUSES	
SYMPTOM	CAUSE
Wear on Left Side	Riding on Crowned Roads
Edges Worn	Underinflation or Excessive Loads
Excess Wear in the Middle of Tire	Over-inflation or Tire Abuse
Cracks in Tread Grooves	Underinflation, Excessive Loads, Suspension Bottoming
Tread Block Cupping (Usually Front Tire -See Below)	Normal Braking Wear

OZONE CRACKING

Ozone cracking usually shows up on the sidewalls of tires and is caused by sunlight, electric motor emissions, smog, or other environmental factors. Ozone cracking does not pose a problem unless the cracks reach the cords. If this occurs, moisture may penetrate the carcass of the tire causing cord separation. Tires showing signs of severe ozone cracking (cords visible at the bottom of the cracks) must be replaced.

FRONT TIRE CUPPING

Front of tread block worn more than rear of tread block:

- The cupping of front tires is somewhat normal.
- Rear tires are subjected to forces in both directions. The forces of braking and acceleration result in even tire wear.
- Front tires are subjected only to the forces of braking. When the brakes are applied, tire deflection is increased and wear occurs in only one direction.
- Incorrect tire pressure is the number one cause of excessive tire cupping. Too little tire pressure causes the tire to over-deflect which increases the amount of scrubbing and causes more tire cupping.
- Binding or improperly assembled front forks can also contribute to excessive tire cupping. If the front forks do not react as they should the tire acts as the sole suspension component and tread deflection increases.

TIRE CHANGING

GENERAL

There are three generally acceptable methods to dismount and mount a tubeless motorcycle tire from its rim. Furthermore, there are countless variations for each of the three methods.

The three general methods are:

- Pneumatic or electrically operated tire machine.
- Manually operated tire machine.
- Manual manipulation of tire irons.

The seal between the tire and its rim is one of the most critical factors contributing to the safe operation of the wheel/ tire assembly. Each of the three generally acceptable methods to dismount and mount tires is permissible and recommended by Victory. However, careless or improper work habits can damage both the tire and rim regardless of which method is used.
The pneumatic or electrically operated tire machine is preferred as it is the most efficient method to dismount and mount tires. It is also the most expensive way to change tires.
The manually operated tire machine is the next preferred method to dismount and mount tires. It can be just as efficient as a power assisted tire machine. With some types of manually operated tire machines, it will be necessary to remove the belt driven sprocket to gain sufficient clearance for tire removal.
Manual manipulation of tire irons is the least preferred method of tire dismounting and mounting. It will not generally deliver the same efficiency as the other two methods and greater care needs to be taken when performing the operation. Use care not to damage or stress the tire bead when using tire irons. Be sure opposite bead is in drop center of wheel when mounting and dismounting the tire.
Be very careful not to damage the rim, tire, inner tube, brake disk or sprocket regardless of which method is used.
The following method describes the procedure using manually manipulated tire irons. Other than the actual operation of various tools, the general concept is the same regardless of which method is used.
The following procedure shows the front tire being removed from its rim. Other than the possibility of interference of the sprocket, the procedure is the same for the rear tire.
NOTE: Rear sprocket bolts and brake rotor bolts have a pre-applied locking agent and bolts should either be replaced or a locking agent applied upon assembly. Refer to Chapter 11 for rear sprocket removal and installation. Refer to Chapter 13 for rear brake rotor removal and installation. Brake rotor bolts should not be re-used.

TIRE REMOVAL

TIRE REMOVAL (TYPICAL)

1. Remove wheel / tire assembly from motorcycle (front refer to Chapter 12, rear refer to Chapter 13).

2. Remove valve core from valve stem and let all air escape. (Fig. 1)

A. CAUTION

If the tires have a directional arrow it must be observed and the tire installed correctly.
3. Mount the wheel assembly into a tire bead breaker and break the bead. (Fig. 2)

4. Flip the wheel assembly over and break the bead on the other side.

A CAUTION

IMPORTANT: Take great care not to bend or otherwise damage the brake disc and/or belt driven sprocket. If the bead breaker being used interferes with either the brake disk and/or belt driven sprocket, remove the disc or sprocket as required.

NOTE: This procedure can be performed on an empty drum or similar fixture. The top lip of the drum should be covered with protective material or split hose to protect the rim. (Fig. 3)

5. Position wheel assembly so brake disc will not be damaged and rim will not be scratched.
6. Push tire down and lubricate tire bead with tire lubricant on both sides of tire. (Fig. 4)

7. Install rim protectors at 12:00 and 2:00 positions. (Fig. 5)

Rim protectors PV-43536
8. Stand opposite of rim protectors. Use your knee to push tire bead down into the rim's drop center at location (Fig. 6, A) while pulling bottom bead up into drop center. Beads must be kept in drop center during following steps.
9. With both beads in the drop center, slide a tire iron between tire bead and 120^{\prime} clock rim protector (Fig. 6, B), lift the bead up with the tire iron, and hold.

10. Using another tire iron to lift the bead at the 2 o'clock $^{\prime}$ position.
11. Remove the 2 o'clock tire iron and slide rim protector to the 4 o'clock position, and lever the bead up.
IMPORTANT: The top and bottom tire beads that are opposite the area being worked with the tire irons must continually be pushed into the drop center of the wheel, or bead removal will be difficult and tire could be damaged.
12. Continue going around the tire in small steps, until one side of the tire is off the rim.
13. Turn the tire and wheel assembly over on the drum, so the removed bead is on the bottom side.

TUBE TYPE TIRES:

Remove valve stem nut, push stem through rim.
Remove tube and inspect tube carefully for signs of abrasion or other damage.
Replace tube and rim band whenever a tire is removed.
14. Push the tire away from you so the remaining bead is in the drop center of the rim.
15. Lubricate the bead and start it over the rim with a tire iron.
16. In most cases the tire can be forced off of the rim by hand. Continue to work around the tire until the tire is completely dismounted.

WHEEL INSPECTION

VISUAL INSPECTION \& RUNOUT

1. Refer to chapter 12 for complete front wheel inspection procedures.
2. Refer to chapter 13 for complete rear wheel inspection procedures.
3. Clean the rim of all rubber particles and corrosion.
II WARNING
If any of the following problems are discovered, replace
the wheel.
4. Inspect wheel for cracks and/or distortion.
5. Inspect bead seating area of scratches, gouges, distortion or any damage that could create a sealing problem.
6. Inspect wheel for axial runout, measured on a smooth outer edge surface of wheel as shown in Fig. 7 (A).
7. Measure wheel for radial runout (Fig. 7, B)

NOTE: Measure radial runout on tire bead sealing surface of wheel. Be sure surface is clean before measuring
8. Compare measurements of axial and radial runout to specifications listed on page 14.3. Replace wheel if any measurement exceeds Service Limit. Cast or Billet wheels cannot be straightened.
9. Clean the sealing surfaces of the rim thoroughly. Use a soft brush (nylon) soap and water if necessary.

TIRE REPAIR PRECAUTIONS

4 WARNING

Only permanent plug-patch repairs of small tread area punctures from inside the unmounted tire are recommended. Never perform an exterior repair and never use an inner tube as a substitute for a proper repair. Speed should not exceed 50 MPH for the first 24 hours after repair and the repaired tire should never be used over 80 MPH . Inspect inflation pressure after the tire cools for at least three hours following initial operation.

VALVE STEM

TIRE VALVE AND STEM INSPECTION

1. Remove and inspect valve core (Fig. 8). Replace if seal is worn, deformed or otherwise damaged. Inspect tire valve for cracks or visible damage and replace if necessary.
NOTE: Valve stem replacement is recommended when tire is being replaced.

VALVE STEM INSTALLATION - RUBBER

1. Remove tire from wheel and cut valve stem with a diagonal cutter to remove.
2. Clean tire valve hole and sealing area thoroughly.
3. Lubricate tire valve and hole with $\mathrm{P}-80$ rubber lubricant or equivalent.
4. Place tire valve into hole and screw a tire valve installation tool (commercially available) onto valve.
5. Place a small wood block against the rim to improve leverage point and keep the pulling angle as straight as possible. (Fig. 9)
6. Pull the valve until fully seated and remove tool.

VALVE STEM INSTALLATION - METAL

1. Remove tire from wheel and remove old stem.
2. Clean gasket or O-ring seal surface of wheel.
3. Place tire valve (with seal washer or O-ring installed) through hole in rim and secure it hand tight with nut.
4. Refer to Fig. 10. On Type 2 valve stems (with no holding slot) tighten upper nut (A) to stem cap (B).
5. Hold nut (A) to prevent valve stem rotation, and torque lower stem nut (C) to 1.35 Nm (12 lb -in) using an open end torque wrench.
6. Release upper nut from cap and screw it down against stem nut.
7. Hold stem nut and tighten lock nut to $1.35 \mathrm{Nm}(12 \mathrm{lb}-\mathrm{in})$.

TIRE INSTALLATION

TIRE MOUNTING

1. Lubricate both tire beads with rubber lubricant. (Fig. 11).

Fig. 11

Abstract

\section*{A. WARNing}

Never apply grease, oil, gasoline, spray type lubricants or anything other than rubber lubricant or a neutral soap and water solution to the tire bead. Doing so can damage the tire.

Balance Dots

Dunlop tires have a yellow dot on the sidewall which corresponds to the lightest part of the tire. This dot is meant to line-up with the tire valve which often is the heaviest part of the rim (although this is not always the case).

Victory does not recommend the use of liquid balancer/ sealers. These are a form of temporary repair which may adversely affect ply material and mask secondary damage caused by the penetrating object. Reliance upon sealants can result in sudden tire failure and accident.

Directional Arrows

If tires have directional arrows, they must be observed and tires installed correctly. When tires are manufactured, tread rubber is laid down as a strip and its ends connect as overlapping joints. When the tire is mounted correctly the scrubbing forces of acceleration (rear) or braking (front) press the lap joints together rather than try to separate the joint.

The wheel assemblies must be free of foreign debris that would affect balancing.
Carefully inspect the wheel bearings, seals and axle for damage or corrosion.

Ensure that bead is correctly seated.

TUBE TYPE TIRES:

Install new rim band (rim flap) on rim with hole oriented over valve stem hole in rim.

1. Place tire on drum.

A CAUTION

Support tire assembly in such a way that brake disk or belt drive sprocket will not be damaged.
2. Lubricate the bead.
3. Orient tire correctly as to the balance dot and directional arrow.
4. Push tire on to rim until one bead is installed. It shouldn't be necessary to use tire irons to put one side of the tire onto the rim. Remember to keep bead(s) in the drop center of the wheel whenever possible.
5. Turn the tire / wheel over on the drum so the uninstalled portion of tire is facing up.

NOTE: Confirm tire is positioned correctly by observing directional arrows. (Fig. 12)

6. For tube type tires, also observe the following:

TUBE TYPE TIRES:

Apply baby powder to new tube and install by inserting valve stem through rim band and rim.

Tube must be completely deflated at this time. Install the valve stem lock nut a few threads. Do not tighten the lock nut at this time.

Install tube in tire starting at valve stem and working your way around until entire tube is laying inside the tire in a natural position.

Arrange the tube if necessary to eliminate kinks or bends, and be sure the valve stem projects straight out. The stem should form a 90 degree angle with the rim.

Finger tighten lock nut to hold stem in position.

4 CAUTION

Make sure your tire irons are smooth and free of scratches or any sharp edges. Polish them if necessary. Do not slide the tire iron in any more than is necessary. When installing tube type tires, avoid lifting the tire iron past vertical to minimize the chance of pinching the tube.
7. Lubricate the tire bead.
8. With your hands, push as much of the remaining tire bead as possible into the rim, pinching both upper and lower beads into the drop center.
9. When no more of tire can be installed by hand, press down on portion of tire in front of you with your knee to keep the top bead in the drop center.
10. Carefully slide a tire iron between the rim and tire at the other side of the un-installed portion of the tire.
NOTE: Be sure both beads are forced as far as possible into the drop center of the rim.
11. Lever the tire iron over and install that portion of tire. Continue to move tire iron in small increments until tire is completely installed.
12. Install valve core if it was removed.
13. Line up balance dot.
14. Confirm that the directional arrows are pointing in the correct direction.
15. Bounce tire on the floor several times while rotating tire. This will expand tire bead outward slightly which
will make tire inflation easier. (Fig. 13)

16. Inflate tire observing the precautions listed below and on page 14.10.

TIRE INFLATION \& PRECAUTIONS

- Wear approved eye protection
- Lubricate the tire beads with a tire mounting lubricant before inflation.
- Before inflating a tube type tire, check to be sure valve stem is still straight. If not, rotate tire slightly on rim (in the direction the stem is pointing) to align (Fig. 14).

Valve Stem Alignment (Tube Tires)
Fig. 14

- Lock assembly on mounting machine or place in safety cage before inflating to seat beads
- Use extension gauge and hose with slip-on air chuck.
- Stand back with no part of your body within the perimeter of the assembled tire and rim.
- Inflate with core in valve stem
- Never inflate above 42 psi to seat beads
- If beads do not seat by 42 psi. Deflate and repeat procedures. Never use a volatile substance or rubber "donut" to aid bead seating.

1. Inspect the line molded onto the tire side walls. It must be the same distance from the rim all the way around the tire. If the distance varies it indicates that tire is not seated properly. (Fig. 15)

2. If tire is not seated correctly, deflate and unseat the tire, relubricate the tire beads and repeat inflation procedure.
3. Install wheel assembly onto balance stand and spin. Observe the wheel assembly while it is spinning to make sure the tire is seated properly.
4. Adjust tire pressures to specifications.
5. Balance tire / wheel assembly. Refer to page 14.11.

warning

FOR REPAIRED TIRES: Speed should not exceed 50 MPH for the first 24 hours after repair and repaired tire should never be used over 80 MPH . Inspect inflation pressure after tire cools for at least three hours following run-in.

FOR NEW TIRES: Replacement of OEM tires or replacement with differently constructed tires will not immediately produce improved reactions the same as the original tires when new. When new tires are installed, they should not be subjected to maximum power or hard cornering until a reasonable "scrub" period of approximately 100 miles has been covered. This will permit the rider to become accustomed to "feel" of new tires or tire combination, and achieve optimum road grip.

Inspect and adjust tire inflation pressure after tire cools down for at least three hours following "run-in".

TIRE BALANCING

TIRE BALANCING

A. WARNING

It is essential that the wheel assembly be balanced before use and rebalanced each time the tire is removed.

Wheel balance affects stability, handling and overall safety of the motorcycle.
All Dunlop street tires should be installed with the yellow balance dot at the tire valve.

The use of liquid balancer/sealer is not recommended.
This procedure will outline balancing wheel assembly in a gravity balance stand. If a pendulum or spin type balancer is being used, reference the manufacturer's instructions that came with the equipment.

1. Mount wheel assembly in a balance stand.

Typical Balance Stand (Commercially available)
(Fig. 16)

Fig. 16
2. Remove all balance weights. Clean tire and rim thoroughly.

NOTE: While it is possible to balance a wheel assembly with axle and grease-free wheel bearings as the pivot point, it is not recommended. Use an inspection stand that has knife edge bearings and its own axle.
3. Spin the wheel assembly. Allow it to stop on its own and mark the highest (lightest) part of the wheel.
4. Repeat the spinning process to verify the heaviest part of the wheel. (Fig. 17)

NOTE: If the bearings are totally free to rotate and the wheel does not stop in the same place each time, the wheel is in balance.
5. Place balance weights at the lightest portion of wheel in small increments. (Fig. 18)

6. After each addition of weight, spin the wheel assembly and allow it to stop by itself.
7. When correct amount of weight has been added to wheel, it will no longer stop in the same location and the wheel assembly is balanced.
8. Install wheel / tire assembly tire on motorcycle.

Front wheel installation: Chapter 12
Rear wheel installation: Chapter 13

A. CAUTION

Do not add more than 85 grams (3.0 oz) of weight to the rear wheel.

Do not add more than 85 grams (3.0 oz) of weight to the front wheel

If more than the recommended weight is necessary to balance the wheel, dismount the tire and rotate it 90° without regard to the yellow balance dot, and re-balance the wheel 7 tire.

Adhesive Weight P/N 1520253

TROUBLESHOOTING

TROUBLESHOOTING

PROBLEM	POSSIBLE CAUSE	REPAIR RECOMMENDED
Rear Wheel (Wobbles)	Bent rim	Replace
	Worn or damaged wheel bearings	Replace as a set
	Worn or damaged swing arm bushings.	Replace as a set
	Damaged or incorrect tire	Replace rear tire
	Wheel assembly out-of-balance	Balance wheel
	Low tire pressure	Inflate to specification
	Loose swing arm, axle or suspension fasteners.	Torque to specification
Handlebars Oscillate (Wobble)	Bent front axle	Replace
	Worn or damaged wheel bearings	Replace as a set
	Tire mounted incorrectly	Inspect and re-mount tire
	Damaged tire	Replace
	Loose steering stem nut	Adjust to specification
	Incorrect tire	Replace
	Incorrect tire pressure	Inflate to specification
Front Wheel Oscillates (Wobbles)	Bent rim	Replace
	Worn or damaged wheel bearings	Replace as a set
	Damaged or incorrect tire	Replace
	Loose axle or axle pinch bolts	Torque to specification
	Right and left fork not installed at same height	Repair
	Fork oil level incorrect	Fill to specification
	Fork spring free length different between right \& left	Replace spring that does not meet specification
	Wheel assembly out-of-balance	Balance wheel

TIRES / WHEELS
NOTES
\qquad
14.14

CHAPTER 15 BRAKES

BRAKE SYSTEM SAFETY 15.2
SPECIFICATIONS 15.3
TORQUE SPECIFICATIONS 15.3
SPECIAL TOOLS 15.3
ASSEMBLY VIEWS \& ROUTING 15.4
FRONT BRAKE 15.4
REAR BRAKE 15.5
REAR BRAKE LINE ROUTING 15.6
MASTER CYLINDERS 15.7
FRONT BRAKE MASTER CYLINDER 15.7
REAR BRAKE MASTER CYLINDER 15.8
CALIPERS 15.9
FRONT BRAKE CALIPER 15.9
REAR BRAKE CALIPER 15.10
BRAKE SYSTEM SERVICE 15.11
BRAKE FLUID REPLACEMENT \& BLEEDING PRECAUTIONS 15.11
BRAKE BLEEDING / FLUID CHANGE 15.12
FRONT BRAKE PAD REPLACEMENT 15.14
REAR BRAKE PAD REPLACEMENT 15.16
BRAKE DISC INSPECTION (FRONT \& REAR) 15.18
FRONT MASTER CYLINDER SERVICE 15.19
FRONT MASTER CYLINDER INSTALLATION 15.22
FRONT CALIPER SERVICE 15.22
FRONT CALIPER INSTALLATION 15.24
REAR MASTER CYLINDER SERVICE 15.25
REAR MASTER CYLINDER INSTALLATION 15.28
REAR CALIPER SERVICE 15.28
REAR CALIPER INSTALLATION 15.30
TROUBLESHOOTING 15.31

BRAKE SYSTEM SAFETY

GENERAL

Use only genuine VICTORY replacement parts when servicing the brake system. Clean all system components prior to disassembly, including the fluid reservoir cover(s) to reduce the chance of debris entering the system during repair or maintenance work. Start with a clean work area away from dust, water or other contamination. Cleanliness is very important for proper brake system maintenance and repair. Follow procedure outlined in this manual carefully, including fastener torques and the application of special lubricant in required areas. Special lubricants are included with service kits.
> A. warning

> Contaminated brake discs or pads greatly reduce the amount of stopping force available \& increase stopping distance. Brake discs can be cleaned using a commercially available brake disc cleaner. Follow the manufacturer instructions printed on the container. NEVER attempt to clean contaminated brake pads. Always replace pads as a set.

WARNING

The brake system uses ethylene-glycol based fluid (DOT 4). Do not use or mix with different types of fluid such as silicone-based (DOT 5) or any petroleum-based fluid.

Do not let water or moisture enter the master cylinder when refilling. Water significantly lowers the boiling point of the fluid and can result in poor braking.

Do not use brake fluid taken from old, used or unsealed containers. Never reuse brake fluid.
Keep brake fluid containers completely sealed and out of reach of children.
Brake fluid should be completely replaced every 24 months or 12,500 miles.

Brake hoses should be replaced whenever the exterior shows signs of deterioration or damage. Brake hoses should be replaced every four (4) years regardless of their exterior condition.

Bleed the brake system any time it is disassembled or when the brake action is spongy.
Always inspect the operation of the brakes before riding the motorcycle.
Replace sealing washers whenever brake lines are removed.
Always remove the master cylinder fluid reservoir cover and inspect the fluid level when brake pads are replaced.

NOTICE: Brake fluid and some types of brake cleaners will damage paint, plastics and some rubber compounds. Cover or remove plastic and painted parts before working on the brake system. If brake fluid is spilled on cosmetic surfaces, immediately rinse the area with a mild solution of soap and water until all traces of brake fluid are removed. Make sure the master cylinder reservoir being worked on is level and clean before removing the cap.

SPECIFICATIONS

GENERAL SPECIFICATIONS

BRAKE SYSTEM		
Item	Standard	Service Limit
Specified Brake Fluid	DOT 4	Replace every 24 months or 12,500 miles
Brake Disc Thickness, Front	5 mm	$4.5 \mathrm{~mm}\left(.177^{\prime \prime}\right)($ Min $)$
Brake Disc Thickness, Rear	7 mm	$6.5 \mathrm{~mm}\left(.256^{\prime \prime}\right)($ Min $)$
Brake Disc Runout	-	$\left..30 \mathrm{~mm} \mathrm{(.012}^{\prime \prime}\right)($ Max $)$
Brake Pad Wear Limit (Front \& Rear)	-	When wear limit groove is no longer visible
Brake Pedal Free Play (Pedal Clearance)	Floorboards: $\left.1-2 \mathrm{~mm} \mathrm{(.040-.080}^{\prime \prime}\right)$	
Brake Lever Freeplay (Front)	No Adjustment	-

TORQUE SPECIFICATIONS

BRAKE SYSTEM TORQUE SPECIFICATIONS

Refer to the assembly views in this chapter for components not listed here.

Description	Torque N-m	Torque lb-ft (lb-in)	NOTES
Bleed Screw, Caliper (Front and Rear Caliper)	$5.4 \mathrm{~N}-\mathrm{m}$	$(48 \mathrm{lb}-\mathrm{in})$	
Brake Pad Retaining Pin (Front and Rear Caliper)	$17.0 \mathrm{~N}-\mathrm{m}$	$12.5 \mathrm{lb}-\mathrm{ft}$	
Footrest Support to Frame	$47.5 \mathrm{~N}-\mathrm{m}$	$35 \mathrm{lb}-\mathrm{ft}$	
Front Brake Caliper to Fork Leg	$42 \mathrm{~N}-\mathrm{m}$	$31 \mathrm{lb}-\mathrm{ft}$	
Front Brake Caliper Body Screws	$27 \mathrm{~N}-\mathrm{m}$	$20 \mathrm{lb}-\mathrm{ft}$	Loctite E1u E12 Reverse TORX
Front Brake Disc to Wheel Hub	$30 \mathrm{~N}-\mathrm{m}$	$22 \mathrm{lb}-\mathrm{ft}$	See Chapter 12
Front Brake Lever Pivot Screw	$1.0 \mathrm{~N}-\mathrm{m}$	$(9.0 \mathrm{lb}-\mathrm{in})$	
Front Brake Lever Pivot Screw Nut	6.0 Nm	$(52 \mathrm{lb}-\mathrm{in})$	
Front Brake Light Switch Screw	$1.2 \mathrm{~N}-\mathrm{m}$	$(11.0 \mathrm{lb}-\mathrm{in})$	
Front Brake Line Banjo Bolt (All)	$24.5 \mathrm{~N}-\mathrm{m}$	$18 \mathrm{lb}-\mathrm{ft}$	
Front Brake Master Cylinder to Handlebar	$10.8 \mathrm{~N}-\mathrm{m}$	$(96 \mathrm{lb}-\mathrm{in})$	Tighten rear screw first
Front Brake Master Cylinder Reservoir Cover	$1.5 \mathrm{~N}-\mathrm{m}$	$(14 \mathrm{lb}-\mathrm{in})$	
Rear Brake Disc to Wheel Hub	$30 \mathrm{~N}-\mathrm{m}$	$22 \mathrm{lb}-\mathrm{ft}$	See Chapter 13
Rear Brake Line Banjo Bolt (All)	$24.5 \mathrm{~N}-\mathrm{m}$	$18 \mathrm{lb-ft}$	
Rear Brake Master Cylinder Mounting Screws	$10 \mathrm{~N}-\mathrm{m}$	$(84 \mathrm{lb}-\mathrm{in})$	
Rear Brake Pressure Switch to Manifold	$13.5 \mathrm{~N}-\mathrm{m}$	$10 \mathrm{lb-ft}$	
Rear Brake Pressure Switch Manifold to Battery Box	$11 \mathrm{~N}-\mathrm{m}$	$(96 \mathrm{lb}-\mathrm{in})$	
Rear Brake Reservoir Mounting Screw	$11 \mathrm{~N}-\mathrm{m}$	$(96 \mathrm{lb}-\mathrm{in})$	

SPECIAL TOOLS

BRAKE SERVICE SPECIAL TOOLS

Front Master Cylinder Snap Ring Pliers	Commercially Available
Caliper Piston Pliers	Commercially Available
Front Brake Lever Reserve Inspection Adapter,	PV-50104
Vacuum Brake Bleeder (not required)	Commercially Available
Pressure / Vacuum Pump (not required)	. PV-43545

ASSEMBLY VIEWS \& ROUTING

FRONT BRAKE

15.4

REAR BRAKE

15.5

REAR BRAKE LINE ROUTING

MASTER CYLINDERS

FRONT BRAKE MASTER CYLINDER

CCI OIL (009-Z00-313)
Application: Internal: Master cylinder bore, piston, and piston seal cups.

SPECIAL GREASE (009-Z00-115)
Application: External: Lever pivot screw and contact surface of lever to master cylinder piston.

Refer to assembly views and rebuild procedure for detailed application of special lubricants.

BRAKES

REAR BRAKE MASTER CYLINDER

15.8

CALIPERS

FRONT BRAKE CALIPER

REAR BRAKE CALIPER

15.10

BRAKE SYSTEM SERVICE

BRAKE FLUID REPLACEMENT \& BLEEDING PRECAUTIONS

WARNING

Contaminated brake discs or brake pads greatly reduce braking performance and increase stopping distance. Do not attempt to clean contaminated pads. Replace them. Clean the brake disc with brake cleaner.

WARNING

This brake system requires ethylene-glycol based fluid (DOT 4). Do not use or mix different types of fluid such as silicone-based or petroleum-based.

WARNING

Do not use brake fluid taken from old, used or unsealed containers. Never reuse brake fluid. Brake fluid can accumulate moisture, reducing it's performance.

WARNING

Brake fluid is poisonous. Keep brake fluid tightly sealed and out of reach of children.

WARNING

A soft, spongy feeling in the brake lever and/or brake pedal could indicate a hazardous condition in the brake system. Do not operate the motorcycle until the failure in the brake system is corrected.

WARNING

An unsafe condition exists when air is trapped in the hydraulic brake system. Air in the brake hydraulic system acts like a soft spring and absorbs a large percentage of the pressure developed by the master cylinder. Without this pressure, the braking system cannot develop full braking force to allow for safe, controlled stops. It is extremely important to bleed the brakes properly after any brake system work has been performed or when inspection reveals spongy brakes.

Keep these points in mind when bleeding hydraulic brakes:

- The master cylinder reservoirs have limited capacities. It is easy to empty them during the bleeding procedure. This introduces air into the system which you are trying to purge. Watch the reservoir closely and add fluid when necessary to keep the level above the LOW mark and prevent air from re-entering the system.
- Apply only light to moderate pressure to the lever or pedal when bleeding the brake system. Extreme pressure or rapid movement will cause a surge of fluid through the small orifices of the brake system when the bleeder screw is opened and could introduce air into the system by means of cavitation.
- Small amounts of air can become trapped in the banjo bolt fittings at the master cylinder(s) and junction points of brake lines. These fittings can be purged of air by following a standard bleeding procedure at these fittings (instead of the bleed screw on caliper) if necessary to speed the bleeding process. This is usually only needed if system was completely drained of fluid. Bleed each line connection, starting with the fitting closest to the master cylinder, working toward the caliper, and ending with the bleed screw.
- Always torque banjo bolts and other brake system fasteners and components to specified torque.
- Always install NEW genuine Victory replacement parts and rubber parts upon assembly. Apply special lubricant where indicated (included in service kits).

BRAKE BLEEDING / FLUID CHANGE

NOTE: Bleeding procedure is basically the same for both front and rear brakes.

NOTE: Monitor fluid level in master cylinder reservoir constantly. Do not allow fluid level to fall below minimum level. Use only Victory DOT 4 Brake Fluid PN 2872189.

1. Remove cover and fill reservoir with DOT 4 brake fluid from a sealed container.
2. Between fills, set reservoir cover on reservoir to prevent entry of contaminants.

NOTE: If system is dry or very low on fluid due to parts replacement or disassembly, pump the lever or pedal slowly until air bubbles no longer rise through the fluid in the reservoir. For normal bleeding or system flush, continue with Step 3.
NOTE: Brake systems should be flushed every 2 years or more often if the fluid is discolored. To flush the system, follow the normal brake bleeding process, and continue bleeding and filling the reservoir until fluid moving through the bleeder hose is clear.
3. Remove rubber cap and install an 8 mm box end wrench over the bleeder screw. Connect a tight-fitting clear hose to bleed screw of front (A) or rear (B) caliper.

NOTE: When bleeding dual front disc brake systems, bleed left side lines / caliper first (farthest from master cylinder) then bleed right side (closest to master cylinder). Repeat left caliper bleeding once.

4. Place a small quantity of fresh brake fluid into a container. Place the free end of the bleeder hose into the container with the end submerged.

5. Slowly pump brake lever or pedal until pressure builds and then hold.

6. Quickly open and close the bleed screw while holding pressure on lever or pedal.
7. Release lever or pedal pressure.
8. Check level of fluid in reservoir and add if necessary.
9. Repeat Steps $5-8$ until lever or pedal is firm and no air can be seen moving through the clear hose.
10. Torque bleed screw to $5.4 \mathbf{N m}(\mathbf{4 8} \mathbf{~ l b}-\mathrm{in})$. For front brake repeat bleeding process for the right caliper, then bleed left caliper again.

11. After completing the bleeding procedure, inspect brake fluid level and fill to the MAX line.
12. Clean the reservoir cover, diaphragm, and reservoir sealing surface. If diaphragm is extended, return it to normal (flat) position.
13. Install diaphragm and cover.

14. Inspect the feel when pressure is applied to the lever or pedal. The lever or pedal should feel firm, not spongy. If lever or pedal is not firm, repeat bleeding procedure and insect brake system. See Troubleshooting at the end of this chapter.
.

FRONT BRAKE PAD REPLACEMENT

NOTE: Always replace brake pads as a set. Pads can be changed with caliper installed on the motorcycle. Refer to page $\mathbf{2 . 1 5}$ for front pad inspection.

1. Remove brake pad pin (A).

2. Push inward on spring (B) and remove pin. Note orientation of sprint plate for assembly.

3. Push each pad back toward outside of caliper by hand or use a non-marring wedge to gain clearance for new pads.
NOTE: Brake fluid will be forced back into the reservoir when pads / pistons are pushed back. Remove reservoir cover and monitor fluid level, or attach a hose to brake bleeder screw (as described in Brake Bleeding on page 15.12) and open the bleed screw while pushing the pads and pistons back.
4. Slide inner and outer pad out of the caliper.

5. Wipe brake disc clean with a shop towel sprayed with Victory Brake Cleaner.
6. Inspect caliper piston seals for any sign of fluid leakage.
7. Install isolator on new brake pads. Be sure isolator plate (C) does not protrude from the brake backing plate.

8. Apply a small amount of Silicone Grease (009-Z00111) to O-ring on the end of the pad retaining pin.
9. Slide the outer pad into place with friction material toward disc, align pin hole and star pin through pad to hold it in place.

10. Install inner pad with friction material toward disc.

11. Lay spring in place over pads and press on center arm of spring (D) while sliding pin over the top of center arm.

12. Align hole of inner pad and push pin through until threads of pin contact the caliper. Center arm of spring is below pin (E).

13. Torque pin to $17 \mathrm{Nm}(12.5 \mathrm{lb}-\mathrm{ft})$.
14. Inspect brake fluid in reservoir and set to proper level (page 15.12).
15. Slowly pump lever to set brake pads against disc. Lever should be firm, not spongy. If lever is spongy, inspect pad installation, bleed brake lines (page 15.12) and inspect brake disc (see page 15.18). If lever is still not firm, refer to Troubleshooting at the end of this chapter.
16. Install reservoir cover. Torque screws to 1.5 Nm (13 $\mathrm{lb}-\mathrm{in}$).
17. Operate brake lever several times until lever is firm and pressure can be felt.

A WARNING

After pad installation or any brake system repair, safely elevate wheel, apply and release brake pedal or lever 23 times and release. Elevate wheel and verify wheel turns freely without drag. If brake drag is evident, do not operate the motorcycle. Inspect vehicle to determine cause and then repair as necessary.
15.15

REAR BRAKE PAD REPLACEMENT

Always replace brake pads as a set. The rear pads can be changed with the caliper installed on the motorcycle.

Refer to page 2.15 for rear brake pad inspection.
Do not attempt to remove the caliper from the bracket with bracket installed.
NOTE: Brake fluid will be forced back into the reservoir when pads are pushed back. Remove reservoir cover and monitor fluid level, or attach a hose to the brake bleeder screw (as described in Brake Bleeding on page 15.12) and open the bleed screw while pushing the pads and pistons back.

1. Push caliper toward wheel to push pad and pistons back and provide clearance for new pad installation.

NOTE: The caliper should move freely on the guide pins.
2. Remove pad retaining pin (A).

7. Apply Silicone Grease (009-Z00-111) to O-ring on pad retaining pin.
8. Install new outer pad with friction material against disc. Be sure tab is engaged with caliper as for inner pad.

9. Start pin in caliper. Align hole in outer pad (push pad inward against spring pressure) and push pin through.
10. Align hole of inner pad and push pin through until threads of pin contact the caliper.

12. Inspect fluid level in the reservoir and adjust as necessary (page 15.11).
13. Pump brake pedal slowly several times to set new pads against disc, until lever is firm and pressure can be felt.
14. Bleed brake system if necessary (page 15.12).

WARNING

After pad installation or any brake system repair, safely elevate wheel, apply and release brake pedal or lever 2-3 times and release. Verify wheel turns freely without drag. If rear brake drag is evident, inspect pedal clearance as outlined on page 2.16. Do not operate the motorcycle if drag is still evident after clearance adjustment. Inspect vehicle to determine cause and repair as necessary.
11. Tighten the pin and torque to 17 Nm ($12.5 \mathrm{lb}-\mathrm{ft}$).

BRAKE DISC INSPECTION (Front \& Rear)

1. Visually inspect disc for cracks or damage.
2. Measure brake disc thickness in several locations around disc with a micrometer, and along wear surface and compare to specifications found on page 15.3.

NOTE: Replace the brake disc if any measurement is worn beyond the service limit.
3. With disc mounted to wheel, inspect for runout or warpage with a dial indicator and compare to specifications found on page 15.3. Runout should be measured $2-4 \mathrm{~mm}$ in from outside edge of disc.
4. If runout is excessive, refer to Troubleshooting at the end of this Chapter. Replace brake disc if dial indicator reading displays excessive brake disc runout and other possible causes have been eliminated.
5. Refer to Chapter 12 for front brake disc removal and installation. Refer to Chapter 13 for rear brake disc removal \& installation.

FRONT MASTER CYLINDER SERVICE

NOTICE: Brake fluid and brake cleaners could damage paint, plastics and some rubber compounds. Cover or remove plastic and painted parts before working on the brake system. If brake fluid is spilled on cosmetic surfaces, immediately rinse the area with a mild solution of soap and water until all traces of brake fluid are removed. Be sure master cylinder reservoir is level before removing cover.

IMPORTANT: Replace all rubber parts upon assembly.

1. Clean the master cylinder. Attach a drain hose to caliper bleed screw and place the end in a suitable container. Drain brake fluid from the front brake system (each caliper on dual front disc models) by slowly pumping brake lever.
2. Remove mirror (A).

3. Disconnect front brake light switch wires at switch (B).
4. Remove switch (C) and brake lever nut (D), brake lever pivot screw, lever and bushing.
5. Remove brake line from master cylinder (E).
6. Remove screws (F), clamp, and master cylinder.

7. Remove reservoir cover and diaphragm.
8. Pull dust boot off piston and out of cylinder bore.
9. Remove snap ring.

10. Slide piston out with spring. Note spring orientation for assembly of new spring (new parts).

11. Clean master cylinder with isopropyl alcohol and dry with compressed air. DO NOT soak in alcohol for more than 30 seconds. DO NOT aim pressurized air directly at the level sight glass.
12. Inspect bore (G) and chamfer of bore (H) for corrosion, scratches, scoring, or pitting. Replace master cylinder if any of these conditions are evident.

13. Measure the diameter of the bore. Replace master cylinder if worn beyond the service limit.

Master Cylinder Bore Diameter

Service Limit: 15.913 mm (. 6265 in .)
14. Measure the diameter of the master cylinder piston in two places as shown below. Replace piston if worn beyond the Service Limit.

Master Cylinder Piston Diameter
Service Limit: $\mathbf{1 5 . 7 2 m m}$ (. 6189 in.$)$
15. Remove deflector (I) from reservoir.

16. Clean the compensating port (J) and supply port (K) with compressed air to be sure they are clean and unobstructed. Re-install the deflector.

17. Apply a light film of special lubricant from piston kit to each piston seal cup.
18. Assemble spring to new piston assembly as shown with small end to piston. Large diameter of beveled edge on piston seals (L) face toward spring. Install a new retaining ring on end of piston with machined edge (sharpest of the two edges) facing out (M).

19. Carefully install spring / piston assembly into master cylinder bore. Work the front piston seal carefully past the chamfer and into bore. Use care not to damage or fold the seal when working it past the chamfer.
20. Continue to install the piston until the rear seal is past the chamfer. Push and hold the piston in far enough to allow the retaining ring to be installed.

21. Be sure retaining ring is fully seated in the groove.
22. Clean the bore from the retaining ring outward, so the outer edge of the new dust boot adheres properly and will not dislodge from the bore.
23. Install new boot, seating the outer edge fully in the bore and engage outer lip of boot in piston groove.
24. Apply special lubricant from kit to brake lever contact surface.
25. Install master cylinder on handlebar. See page 15.22

FRONT MASTER CYLINDER INSTALLATION

Also refer to handlebar illustration on page 12.4.

1. Clean mounting surface on handlebar.
2. Loosely install master cylinder, clamp, and screws. Rotate clamp on handlebar until parting line of clamp is aligned with parting line of right bar switch or position so top of reservoir is level with bars in the straight ahead position.
3. Torque rear clamp screw first then torque front screw to 9 Nm ($80 \mathrm{lb}-\mathrm{in}$).
4. Connect brake hose to master cylinder with banjo bolt and new sealing washers. Torque banjo bolt to 24.5 Nm (18 lb-ft).
5. Install brake light switch. Torque screws to 1.2 Nm (11 $\mathrm{lb}-\mathrm{in})$. Connect switch wires.
6. Lubricate brake lever bushing with special lubricant from kit and install lever. Torque pivot screw to 1.0 $\mathrm{Nm}(9 \mathrm{lb}-\mathrm{in})$. Hold screw and torque nut to $6 \mathrm{Nm}(52$ (b-in).
7. Install mirror, adjust to proper angle, hold in position and tighten nut securely.
8. Turn handlebars until top of reservoir is level. Fill reservoir with Victory DOT 4 Brake Fluid and bleed the front hydraulic brake system (see page 15.12).

A. warning

After pad installation or any brake system repair, safely elevate the wheel, apply and release the brake pedal or lever 2-3 times and release. Verify the wheel turns freely without drag. If brake drag is evident, do not operate the motorcycle. Inspect the vehicle to determine the cause and then repair as necessary.

FRONT CALIPER SERVICE

NOTICE: Brake fluid and brake cleaners will damage paint, plastics and some rubber compounds. Cover or remove plastic and painted parts before working on the brake system. If brake fluid is spilled on cosmetic surfaces, immediately rinse the area with a mild solution of soap and water until all traces of brake fluid are removed. Make sure the master cylinder reservoir being worked on is level before removing the cap. Replace all rubber parts upon assembly.
IMPORTANT: Replace all rubber parts upon assembly. Keep parts in order for assembly. The top and bottom pistons in the caliper are not the same size.

1. Remove banjo bolt (A), sealing washers, and brake hose from caliper assembly and allow it to drain into a container.
2. Remove front caliper mounting bolts (B) and remove the caliper.

3. Cover the end of brake line(s) to prevent debris from entering.
4. Cover the brake hose connection on the caliper and clean the outer surfaces of caliper assembly with Victory brake cleaner or isopropyl alcohol. Dry with compressed air.

FRONT CALIPER SERVICE (CONT)

5. Remove brake pads. Pads contaminated with oil or grease must be replaced as a set.

6. Remove the 4 caliper body bolts (A) using an E12 reverse Torx socket (B).

7. Separate the halves. Note the O-ring (C) used to seal the fluid passage. This O-ring must be replace along with all rubber parts during assembly.

8. Measure the diameter of each caliper bore. Replace caliper if any is worn beyond the service limit.

Front Caliper Bore Diameter

 SERVICE LIMITSStd Bore 30.23 mm : Limit $=30.31 \mathrm{~mm}(1.1933 \mathrm{in})$ Std Bore 33.96 mm : Limit $=34.04 \mathrm{~mm}(1.3401 \mathrm{in})$
15. Measure the outside diameter of each piston in two spots 90° apart, 5 mm from outer edge. Repeat measurement 5 mm from inner edge. Replace piston if worn beyond service limit at any measuring point.

Front Caliper Piston Outside Diameter
SERVICE LIMITS SERVICE LIMITS
Std Size 30.15 mm : Limit $=30.09 \mathrm{~mm}$ ($\mathbf{1 . 1 8 4 6} \mathbf{~ i n}$) Std Size 33.91 mm : Limit $=33.85 \mathrm{~mm}(1.3327 \mathrm{in})$

IMPORTANT: Install all new rubber parts during assembly. Do not reuse old seals or boots.
16. Apply special lubricant from service kit to new piston seals and dust seals.
17. Apply special assembly oil (included in kit) to outer surface of all pistons.
18. Install piston seals and dust seals in caliper body.
19. Install pistons in their respective bores.

20. Clean threads of each caliper body bolt. Be sure threads are free from any oil, grease, or brake fluid. Apply a few drops of Loctite 242 (Blue) non permanent locking agent to the threads of each bolt.
21. Install a new O-ring on fluid transfer passage, assemble halves of caliper and start (4) bolts while holding pressure on halves to keep O -ring in place.
22. Evenly tighten bolts by hand until halves are secured.
23. Torque bolts to $27 \mathrm{Nm}(20 \mathrm{lb}-\mathrm{ft})$.
24. Install brake pads. Torque pin to $17 \mathrm{Nm}(12.5 \mathrm{lb}-\mathrm{ft})$.

FRONT CALIPER INSTALLATION

1. Clean mounting surfaces of caliper and fork leg.
2. Apply Victory brake cleaner or isopropyl alcohol to a clean shop towel and wipe brake disc(s) clean.
3. Separate brake pads and install caliper assembly over brake disc.
4. Install caliper mounting bolts. Torque to 42 Nm ($31 \mathrm{lb}-\mathrm{ft}$).
5. Connect brake hose to caliper with banjo bolt and new sealing washers.
6. Fill and bleed the front brake hydraulic system (page 15.12).

A warning

After pad installation or brake system repair, safely elevate wheel. Apply and release brake pedal or lever 2-3 times and release. Verify wheel turns freely without drag. If brake drag is evident, do not operate the motorcycle. Inspect vehicle to determine cause and then repair as necessary

REAR MASTER CYLINDER SERVICE

NOTICE: Brake fluid and brake cleaners will damage paint, plastics and some rubber compounds. Cover or remove plastic and painted parts before working on the brake system. If brake fluid is spilled on cosmetic surfaces, immediately rinse the area with a mild solution of soap and water until all traces of brake fluid are removed. Make sure the master cylinder reservoir being worked on is level before removing the cap.

IMPORTANT: Replace all rubber parts upon assembly.

1. To reduce spills when lines are disconnected, draw fluid from master cylinder reservoir with a clean syringe or pump fluid from system through the brake caliper bleed screw (see brake bleeding procedure page 15.11).
2. Remove pushrod clevis pin (A) and reservoir mount screw (B).
3. Loosen footrest support bolts to access master cylinder mounting bolts (C) and remove master cylinder.

4. Remove reservoir hose clamps at master cylinder and disconnect fluid supply hose.
5. Remove brake line banjo bolt, sealing washers, and brake line from master cylinder.
6. Compress pushrod and remove retaining ring. Slide the assembly out of master cylinder.

7. Pull boot back from fluid supply fitting and remove retaining ring.

8. Pull fitting from master cylinder with a twisting motion.
9. Inspect cylinder bore (D) and chamfer (E) on the front of the bore for corrosion, scratches, scoring, or pitting. Replace master cylinder if any of these conditions are evident.

10. Measure the bore diameter (F, above). Replace if worn beyond the service limit.

Master Cylinder Bore Diameter
 Service Limit: 12.743 (. 5017 in)

11. Clean compensating port (G) and supply port (H) with compressed air to be sure they are clean and unobstructed.

12. Clean all parts with clean Victory DOT 4 brake fluid or isopropyl alcohol.
13. Replace ALL RUBBER PARTS with new.

14. DUST BOOT REPLACEMENT

Measure the length of the pushrod assembly as shown below or count exposed threads above the nut inside the clevis prior to disassembly so pushrod length can be returned to an approximate adjustment after installing the dust boot.
NOTE: Pedal free play (clearance) must be inspected and adjusted before operating the vehicle.

15. Hold clevis (I) and loosen lock nut (J) with a 12 mm wrench (turn lock nut clockwise as viewed from the clevis end).

16. Rotate clevis counterclockwise to remove it from the pushrod with the adjuster nut inside.
17. Remove lock nut from pushrod and remove old boot.
18. Install new boot and new piston retaining ring, and assemble the clevis.
19. Set the rod length back to the length recorded before disassembly.

20. Hold clevis and tighten lock nut against it. Torque to 17 Nm ($12.5 \mathrm{lb}-\mathrm{ft}$.).
21. Apply Victory DOT 4 brake fluid to the O -ring (K) for the supply fitting and install it in the master cylinder.

22. Install supply fitting and retaining ring.
23. Press seal (L) into place until seated.

24. Assemble spring to new piston with small end to piston. Large diameter of beveled edge on piston seals (M) face toward spring. Install a new retaining ring on end of piston with machined edge (sharpest of the two edges) facing out (N).

25. Apply special lubricants from service kit to the seal cups, pushrod and backing washer.
26. Carefully install spring / piston assembly into master cylinder bore. Work the front piston seal carefully past the chamfer and into bore. Use care not to damage or fold the seal when working it past the chamfer.
27. Continue to install the piston until the rear seal is past the chamfer. Push and hold the piston in far enough to allow the pushrod assembly and retaining ring to be installed.
28. Align the pushrod and install the retaining ring. Be sure it is fully seated in the groove.

29. Press outer edge of boot into the bore. The outer edge of boot and the bore should be dry so boot does not dislodge.
30. Pull the inner edge of the boot into place on the boot retainer nut on the pushrod.

REAR MASTER CYLINDER INSTALLATION

Also refer to the appropriate Assembly View at the beginning of this chapter.

1. Install master cylinder on footrest support, engaging clevis with brake pedal.
2. Apply a light film of grease to clevis pin and install from outside to inside. Install a new retaining ring on pin.
3. Position pedal return spring behind upper mounting post and install cylinder mounting screws. Torque mounting screws to 10 Nm ($84 \mathrm{lb}-\mathrm{in}$).
4. Verify the pushrod length adjustment.

There must be $1-2 \mathrm{~mm}$ (. $040-.080^{\prime \prime}$) clearance between pedal (A) and pedal stop (B) when pedal is in fully released position and master cylinder piston is against its internal stop.
5. Re-adjust pushrod length to provide specified clearance if necessary.

6. Assemble footrest support to the vehicle. Torque bolts to 47.5 Nm ($35 \mathrm{lb}-\mathrm{ft}$.)
7. Attach fluid supply hose to master cylinder supply fitting using new clamps.
8. Install brake line with new sealing washers and torque banjo bolt to 24.5 Nm ($18 \mathrm{lb}-\mathrm{ft}$).
9. Fill reservoir with Victory DOT 4 brake fluid and bleed the system as outlined on page 15.11 .

WARNING

After pad installation or any brake system repair, safely elevate the wheel, apply and release the brake pedal or lever 2-3 times and release. Verify the wheel turns freely without drag. If brake drag is evident, do not operate the motorcycle. Inspect the vehicle to determine the cause and then repair as necessary.

REAR CALIPER SERVICE

1. Remove banjo bolt and sealing washers from rear caliper and allow fluid to drain into a container.
2. Remove rear wheel (Chapter 13). Caliper and bracket must be removed as an assembly.
3. Remove pin (A) and brake pads. Note orientation of spring plate (B) for assembly.

4. Slide caliper bracket off pins and remove spring plate.

5. Remove caliper pistons. Keep pistons in order for installation in their respective bores.

6. Remove dust seals and piston seals. Use care not to damage the seal bores.
7. Clean caliper thoroughly with isopropyl alcohol. Dry with compressed air. Clean seal grooves thoroughly. Any residue left behind in the grooves could cause caliper pistons to stick and result in brake drag.
8. Inspect each bore and surface of each piston for corrosion, scratches, scoring, or pitting. Replace caliper assembly if any of these conditions are evident.

9. Measure diameter of each bore and piston. Replace caliper assembly or parts if worn beyond service limit.

Caliper Piston Bore Diameter

Service Limit: $\mathbf{2 7 . 0 5 m m}$ (1.0649 in)

10. Install all new rubber parts during assembly. Do not reuse old seals or boots. Apply special lubricant from service kit to new piston seals and dust seals.
11. Apply special assembly oil to outer surface of all pistons.

12. Install piston seals and dust seals in caliper body.
13. Install pistons in their respective bore.
14. Replace caliper pin boot (C) on bracket and (D) on caliper. Apply special lubricant from service kit to boots and both pins.

15. Be sure brake pad guide plate is in place on bracket with arrow (E) pointed up.

16. Assemble bracket to caliper. Remove excess lubricant.
17. Install spring plate and outer brake pad. Start pad pin through outer pad.
18. Install inner pad with insulator and backing plate.

19. Torque brake pad pin to 17 Nm ($12.5 \mathrm{lb}-\mathrm{ft}$).
20. Be end tabs of pads are both fully engaged in the heel plate (F) on bracket.

REAR CALIPER INSTALLATION

1. Install caliper and bracket. See "REAR WHEEL INSTALLATION* on page 13.15.
2. Install brake hose and banjo bolt with new seal washers.
3. Torque banjo bolt to 24.5 Nm ($18 \mathrm{lb}-\mathrm{ft}$.)
4. Fill and bleed the rear hydraulic brake system. Refer to page 15.11.

A. warning

After pad installation or brake system repair, safely elevate wheel, apply and release brake pedal or lever 2-3 times and release. Verify wheel turns freely without drag. If brake drag is evident, do not operate the motorcycle. Inspect vehicle to determine the cause and then repair as necessary.

TROUBLESHOOTING

BRAKE SYSTEM TROUBLESHOOTING

Problem	Symptom and/or Possible Cause	Possible Repair
Weak Brakes or Erratic Braking Action	Fluid Leakage (External) Fluid Leakage (Internal of Master Cylinder) Worn Pads Oil Contamination of Brake Pads and/or Brake Disc Air In System Low Brake Fluid Level In Reservoir Excessive Brake Disc Runout Worn or Damaged Wheel Bearings. Loose Front Axie Nut or Clamps or Loose Rear Axle Caliper Mount Surface Uneven Or Misaligned; Missing or Damaged Fasteners Clogged or Restricted Hydraulic Line Caliper Bracket Misaligned, Bent or Distorted Loose Brake Disc Brake Pads Glazed	Repair or Replace Leaking Component Replace Master Cylinder Replace Brake Pads Pads Must Be Replaced. Disc May Be Cleaned. Bleed Air From System Fill Reservoir, Bleed Brakes, Top Off Fluid Level. Replace Brake Disc. Replace Wheel Bearings. Torque Correctly, See Chapter 12 \& 13 Inspect / Repair Replace Line(s) Replace Bracket Install New Screws. Torque to Specification Replace Pads. Avoid Needless Heavy Braking for 100-200 miles (Burnish New Brake Pads).
Poor Brakes or No Brakes When First Applied. Brake Lever Pressure Present If Lever Is "Pumped".	Air In System Low Brake Fluid Level In Reservoir Brake Disc is Bent or Warped Caliper Misalignment External Leak Internal Leak (master cylinder) Faulty Brake Hose	Bleed Air From System Fill Reservoir, Bleed Brakes, Top Off Fluid Level. Replace Brake Disc Determine Cause and Correct Repair or Replace Damaged Component Repair or Replace Master Cylinder Inspect for Bulges / Replace
Brake Pedal or Brake Lever Pulsates	Brake Disc Bent or Warped Mounting Surface of Brake Disc Uneven / Disc Loose Caliper Mount Surface Uneven Or Misaligned; Missing or Damaged Fasteners	Replace Brake Disc Repair or Replace as Necessary Repair or Replace as Necessary
Excessive Lever or Pedal Travel I Spongy Brake Feel.	Air in System Loose Mounting Hardware Low Brake Fluid Level In Reservoir Incorrect Brake Fluid Used See "Weak / Erratic Brakes" and Poor Brakes" possible causes above.	Bleed Air From System Repair as Necessary Fill Reservoir, Bleed Brakes, Top Off Fluid Level. Flush System and Replace With Correct Fluid
Fluid Leakage	Loose Banjo Fittings Damaged Banjo Fitting Sealing Washers Cracked / Damaged Hose Worn Master Cylinder Piston, Caliper Piston(s) or Seals Diaphragm (master Cylinder reservoir) Leaking Fluid level too high (new brake pads installed without removing added fluid)	Tighten to Specified Torque Replace Replace Repair / Replace Master Cylinder or Wheel Caliper. Inspect / Replace Cover, Cap, Diaphragm or Reservoir as Required Correct fluid level

Problem	Symptom and/or Possible Cause	Possible Repair
Brakes Drag Excessively or Self-Apply (Brakes Overheat)	Reservoir Over Filled	Adjust Level As Necessary
	Brake Pedal Or Lever Not Returning Completely To Rest Position	Inspect Linkage, Pivots and Mechanism For Cause Of Binding Or Restricted Movement
	Inadequate Freeplay	Measure Pedal Clearance / Adjust
	Compensating Port Plugged	Repair or Replace Master Cylinder
	Internal Corrosion of Components (Master Cylinder / Caliper)	Replace Damaged Component
	Rear Caliper: Corrosion of Sliding Parts, Bent or Damaged Parts	Repair or Replace As Necessary
	Contaminated Brake Fluid	Flush System, Install Correct Fluid
	Caliper Pistons Sticking	Repair / Replace Caliper (Corrosion / Buildup of Residue In Caliper Piston Seal Grooves)
	Rider Error (Operator Riding Brakes)	Educate Operator
Brake Squeal/Squeak	If noise is minor and inconsistent, some brake squeak / squeal is characteristic of disc brakes and usually caused by dust / dirt on pads and / or brake disc.	Apply non oil-based solvent (such as Victory Brake Cleaner or isopropyl alcohol) to a clean shop towel and wipe dust / dirt from brake disc.
	Pad Not Secure in Caliper	Repair as Necessary. Inspect Pad Installation
	Aftermarket (not genuine Victory) Parts	Install Genuine Victory Parts
	Worn or Damaged Wheel Bearing(s)	Replace
	Worn Pads / Disc	Replace

CHAPTER 16 BATTERY CHARGING SYSTEM

SPECIFICATIONS 16.2
GENERAL 16.2
CHARGING SYSTEM \& ALTERNATOR 16.2
FASTENER TORQUE 16.2
BATTERY BOX AND ATTACHMENTS 16.3
FASTENER TORQUE REFERENCE 16.3
REGULATOR / RECTIFIER 16.4
IMPORTANT INFORMATION 16.5
GENERAL 16.5
BATTERY SAFETY 16.5
SPECIAL TOOLS 16.6
BATTERY
BATTERY REMOVAL 16.716.7
BATTERY CHARGING - NEW BATTERY 16.7
BATTERY CHARGING - GENERAL 16.7
DIAGNOSTICS 16.8
TROUBLESHOOTING 16.8
BATTERY LOAD TEST 16.9
CURRENT DRAW INSPECTION (KEY OFF) 16.9
REGULATED VOLTAGE / AMPERAGE OUTPUT INSPECTION 16.10
STATOR NO-LOAD AC VOLTAGE OUTPUT INSPECTION 16.11
STATOR RESISTANCE INSPECTION 16.12
STATOR WNDINGS TO GROUND INSPECTION 16.12
VOLTAGE DROP: RECTIFIER / REGULATOR TO BATTERY(+) 16.13
RECTIFIER / REGULATOR CONNECTOR INSPECTION 16.13
DIODE LEAKAGE TEST 16.14
REGULATOR / RECTIFIER TEST 16.15
RECTIFIER / REGULATOR REPLACEMENT 16.16
STATOR REMOVAL 16.17
STATOR INSTALLATION 16.17
FLYWHEEL REMOVAL 16.17

SPECIFICATIONS

GENERAL

Item		Specifications
Electrical (General)	Starting System	
	Charging System	Plectric
	Regulator/Rectifier	Permanent Magnet / 3 Phase / Full Wave Rectification
	Lighting System	Solid State Three Phase Voltage Regulator/Rectifier

CHARGING SYSTEM \& ALTERNATOR

Item	Specifications
Alternator No Load AC Output @ Idle (Minimum, Engine Cool)	17.5 V AC
Alternator No Load AC Output @ 2000 RPM (Minimum)	38.5 V AC
Stator Coil Resistance (@ $21^{\circ} \mathrm{C} / 70^{\circ} \mathrm{F}$) (stator Black wire to other Black wire)	Less than 1 ohm
Stator Coil Resistance To Ground (each stator Black wire to ground)	Infinite (no continuity)
Regulator/Rectifier Regulated Voltage	$14-14.8 \mathrm{~V} \mathrm{DC}$
Alternator Output (Amps / Watts)	Type
Battery (P/N 4011374)	Voltage
	Nominal Capacity @ 10 Hr Rate
	Recommended Battery Charging Current
	Cold Cranking Amp Rating

FASTENER TORQUE

Charging System		
Description	Torque Nm	Torque lb-ft (in-lb)
Battery Cover Screw	10 Nm	$(85 \mathrm{in}-\mathrm{lbs})$
Battery Terminal Screws	4.5 Nm	$(40 \mathrm{in}-\mathrm{lb})$
Circuit Breaker Terminal Nuts	2.8 Nm	$(25 \mathrm{in}-\mathrm{lb})$
Flywheel (Rotor) Bolt	102 Nm	$75 \mathrm{lb}-\mathrm{ft}$
Primary Cover Screws	13 Nm	$(115 \mathrm{in}-\mathrm{lbs})$
Regulator/Rectifier to Bracket	10 Nm	$(85$ in-lb)
Regulator/Rectifier Bracket to Crankcase	10 Nm	(85 in-lb)
Stator Mounting Screws	11 Nm	$\left(100\right.$ in-lbs) Loctite ${ }^{\text {Ts }} 242$

16.2

BATTERY BOX AND ATTACHMENTS

FASTENER TORQUE REFERENCE

16.3

REGULATOR / RECTIFIER

16.4

IMPORTANT INFORMATION

GENERAL

All electrical system and component service can be performed with the engine in the frame.

CAUTIONS TO OBSERVE

DURING ELECTRICAL SYSTEM SERVICE:

CONNECTORS

Always turn off ignition switch before disconnecting any electrical component.

Always verify that bullet-type connectors are free of corrosion, contamination or breaks when troubleshooting electrical problems.

Verify that bullet-type connectors are firmly seated. Listen and/or feel for a click when connecting them.

Ensure to release the lock on lock-type couplers before disconnecting them to avoid damaging the connector.

Pulling on the wires when disconnecting couplers can introduce problems. Hold the connectors themselves when disconnecting them, not their associated wires.

Inspect each male and female terminal of multi-pin connectors for corrosion, contamination, loose or bent pins.

BATTERY SAFETY

BATTERY LABEL

WARNING

Battery electrolyte is poisonous. It contains sulfuric acid. Serious burns can result from contact with skin, eyes or clothing. Antidote:

External: Flush with water.
Internal: Drink large quantities of water or milk. Follow with milk of magnesia, beaten egg, or vegetable oil. Call physician immediately.

Eyes: Flush with water for 15 minutes. Call physician immediately.

Batteries produce explosive gases. Keep sparks, flame, cigarettes, etc. away. Ventilate when charging or using in an enclosed space. Always shield eyes when working near batteries.

KEEP BATTERIES AND BATTERY ACID OUT OF REACH OF CHILDREN.

\triangle CAUTION

The charging system used on the motorcycle is calibrated for the maintenance free battery that is installed as original equipment. Do not replace with a conventional lead-acid battery.

Before troubleshooting the charging system, inspect the battery thoroughly. A discharged, poorly charged or faulty battery will make the readings obtained during charging system troubleshooting erroneous or difficult to interpret.

NOTICE
Even with a good battery, battery voltage can
recover after charging, but under excessive loads
the battery voltage will drop quickly and eventually
"die". Often the charging system is suspect when it
is not the cause of the problem. Always inspect for
excessive loads if the battery continues to lose its
charge. Items such as incorrect wattage bulbs,
sticking brake light switch(s), continuous low rpm
operation or leaving the lights on without the engine
running for long periods of time can drain a battery
even if the charging system is operating correctly.

A battery will self-discharge when the motorcycle is not in use. Make sure to properly store the battery as outlined later in this section.

Maximum voltage and service life is only achieved when the battery is properly serviced initially. Make sure to follow instructions outlined later in this section.

Overcharging can be caused by a faulty battery (shorted cell). Test system with a known good battery when diagnosing an overcharge condition.

New batteries must be properly maintained as outlined in this section to ensure proper service life.

A. CAUTION
CONNECTING AND DISCONNECTING THE
BATTERY
Always disconnect the negative battery cable first
when removing the battery.
Always connect the positive battery cable first when
connecting the battery.
If corrosion is found on terminals, remove battery and clean terminals with a solution of baking soda and water. Finish the process by cleaning terminals (both battery and battery cables) with a wire brush.
Once connections are secured, apply a thin film of Nyogel ${ }^{\text {TM }}$ grease to the terminals.
Verify the positive terminal has it's protective boot in
place.

A caution

WIRE ROUTING
Make sure that all wires are routed correctly.

A caution

FUSES
Fuses are in place to protect circuit wiring and components. Always determine the cause of an open fuse before installing a new fuse.

Do not increase the value of the fuse to correct the problem.

Do not use wire, tin foil or other substitutes for fuses

A caution

ELECTRONIC COMPONENTS
Semiconductor parts used in electronic components will not withstand careless handling.

Do not drop or strike parts that contain semiconductors such as the ECM or rectifier/ regulator. Dropping electronic components can cause damage to the component.

Follow instructions supplied in this chapter, including chapter 5 (Fuel Injection) and chapter 17 (Ignition System), very carefully when working on electronic components. Failure to follow instructions may cause irreparable damage to the part being inspected.

SPECIAL TOOLS

The following tools are available for purchase from our tool supplier, SPX:

Engine Stop Tool: PV-43502
Flywheel Puller: PV-43533
Digital Multi-Meter: PV-43546
Connector Test Kit: PV-43526

16.6

BATTERY

BATTERY REMOVAL

1. See page 2.20 .

BATTERY CHARGING - NEW BATTERY

1. Charge the battery at 1.8 amps for 5 to 10 hours. Use a straight rate charger (not load sensing or battery tender type) for the initial charge of a new battery.

2. Remove battery from charger and let it sit for 30 minutes or longer.
3. Measure voltage with a digital multimeter. If lower than 12.5 Vdc , battery must be recharged again in accordance with step 1 and 2 above.
4. After charging battery and letting it sit for 30 minutes or more, check battery voltage again. If battery voltage is still below 12.5 Vdc , replace the battery.

BATTERY CHARGING - GENERAL

1. Measure battery voltage with a digital multimeter. The reading should be above 12.5 Vdc . If battery voltage is lower than 12.5 Vdc , battery must be charged according to the instructions given below.

A CAUTION

Do not remove caps on battery while recharging. Do not attempt to inspect or add fluid to a maintenance free battery.
2. Charge battery at 1.8 amps for 5 to 10 hours.

Battery Charging Specification:

1.8 A for $5-10$ hours

3. Remove battery from charger and let it sit for 30 minutes or longer.
4. Measure battery voltage with a digital multimeter. If battery voltage is lower than 12.5 Vdc , battery must be recharged again in accordance with step 1 and 2 above.
5. After charging battery and letting it sit for 30 minutes or more, check the battery voltage again. If battery voltage is still below 12.5 Vdc , replace battery.
NOTE: When motorcycle is not used for one (1) month or more, remove battery and store it in a cool, dry area. Inspect voltage monthly and charge according to above instructions if necessary.

DIAGNOSTICS

TROUBLESHOOTING

NOTICE: The battery must be fully charged and in good condition to obtain accurate readings. Battery charging current is automatically reduced by the regulator / rectifier if the regulator / rectifier unit reaches a critical temperature (overheated). The system should be cool when testing DC charging output or when testing the regulator / rectifier to ensure accurate readings. Refer to test procedure for individual charging system components for more information.

16.8

BATTERY LOAD TEST

Perform a battery load test using a battery load tester. Follow the load tester manufacturer's instructions carefully.

An alternate (less accurate) method is shown in the illustration below if a load tester is not available.

NOTE: This test is a general indicator of battery condition and is not valid for battery replacement under warranty. If charging system problems are suspected, perform the system tests outlined in this chapter.

1. Fully charge the battery.
2. Allow battery voltage to stabilize by waiting at least 5 minutes after charging is complete.
3. Connect a digital DC volt meter as shown below.
4. Record the voltage reading.
5. Turn headlight on and monitor the voltage for 1 minute. Voltage should be within .5 volts of the value recorded in Step 4.
6. If the battery fails the load test, fully charge the battery again and repeat the test. Replace the battery if it does not pass the test after a second charge.

CURRENT DRAW INSPECTION (KEY OFF)

Current draw is suspect if battery discharges when motorcycle is not in operation (short periods of storage).

1. Turn key OFF and wait at least 30 seconds for all powered circuits to disconnect before performing the key-off current draw test.

2. Disconnect ground cable (-) from battery.
3. Connect digital multi-meter red (+) probe to ground cable and connect black DMM (-) probe to battery negative (-) terminal.

Fluke ${ }^{\text {TM }} 73$ Multimeter PV-43546
4. Read current draw (be sure 30 seconds has passed since key was turned OFF).
5. If current draw exceeds specifications, inspect wiring and components for short to ground.

Specification: Less than 5 mA

6. Locate the faulty component or wiring by disconnecting wiring connections one-at-a-time while observing current draw. Use the wiring diagram to locate possible current draws from battery. When current draw falls within specifications, the last connection disconnected shows which circuit or component is affected.

REGULATED VOLTAGE I AMPERAGE OUTPUT INSPECTION

1. Remove center chin fairing (page 16.3).
2. Remove negative battery leads and connect a 12 V shunt as outlined in the instructions provided with shunt or use an inductive amperage clamp.

NOTICE: Current can easily exceed the measuring limits of your ammeter or its internal fuse.
An inductive ammeter clamp or a suitable shunt must be used to avoid meter or fuse damage.

3. Set digital multimeter (DMM) to $V \mathrm{DC}$ scale.
4. Connect DMM red (+) lead to battery (+) terminal and DMM black (-) lead to battery (-) terminal.
5. Start engine and warm to operating temperature.
6. At 1000 RPM or slightly above; the ammeter should reach the "break-even" point (no amperage leaving the battery).
7. The voltmeter should be rising toward 14 VDC.

Specification:

Break-even point for charging: Idle RPM (Approx.)
8. Increase engine RPM to 2500 . The ammeter should rise a slight amount, then stabilize. Volt meter should read above 14 V DC.
9. Use results obtained from preceding tests and the following descriptions to determine if charging system is functioning properly.

CHARGING SYSTEM OPERATING CORRECTLY: Ammeter goes up a small amount, then stabilizes slightly above +0 amps . Volt meter rises toward $14.8 \pm \mathrm{V}$ DC, drops off a little and starts to stabilize.

LOW BATTERY:

Amperage continues to rise, voltage levels off as battery is absorbing voltage. Need to charge battery fully or use a good battery and repeat test.

CHARGING SYSTEM UNDERCHARGING:
Ammeter drops to 0 or remains below 0 (negative reading) at all rpm, volt meter remains the same or goes down. Go to voltage drop inspection.

CHARGING SYSTEM OVERCHARGING:
Ammeter rises well above 0 and remains there or continues to rise. Volt meter goes well above 14.8 V DC and may continue to rise. Go to voltage regulator/rectifier inspection.

EXCESSIVE LOAD:
Amperage levels off or starts to drop, voltage continues to rise. Load may be excessive (accessories or shorted components). Determine if excessive loads are present (disconnect accessories and re-test).
10. Turn ignition key off.
11. Remove ammeter shunt or inductive clamp.
12. Re-connect negative battery cables to battery.
13. Install center chin fairing.

STATOR NO-LOAD AC VOLTAGE OUTPUT INSPECTION

NOTE: Engine must be started during this test. Be sure to heed the following Warnings and Cautions.

WARNING

HOT COMPONENTS

The engine and exhaust system become very hot during operation and remain hot for a period of time after the engine is shut off. Wear insulated protection for hands and arms or wait until the engine and exhaust system have cooled sufficiently before working on the machine.

WARNING

CARBON MONOXIDE

Never run an engine in an enclosed area. Exhaust contains poisonous carbon monoxide gas that can cause loss of consciousness and may lead to death. If you must run the engine to do some repairs, do so in an open area or with an exhaust evacuation system operating.

A. CAUTION

VOLTAGE / ARCING

Use caution not to touch any of the connections or allow the exposed terminals to come close to any other part of the vehicle or other objects, as an arc may occur.

1. Be sure engine is cool or well below operating temperature prior to testing.
2. Lift tab (A) and push the 3-Pin stator connector toward the front of the vehicle to disconnect.

3. Set Digital Multimeter (DMM) to AC Volts scale (if meter has a Vrms selection use Vrms).
4. Connect one meter lead to P in A on wire connector that comes from stator and the other lead to Pin B.

5. Start engine and let it idle. Observe DMM reading.
6. The meter should indicate a minimum reading of 17.5 VAC at ide.
7. If using a meter other than the Fluke, be sure your meter reads rms volts.
8. Repeat test for pins $A \& C$.
9. Repeat test for pins $B \& C$.

Specification:

No load AC Volts @ 950 RPM:
50A Alternator - Approx ~ 17.5 VAC +/- $1 @ 950$ RPM

NOTE: The test results in steps 7, 8 and 9 can read more than specified VAC, but it is important that the reading for each pair of wires is approximately equal.
10. Increase RPM to 2000. Repeat Steps 4-9.

Specification:

No load AC Volts @ 2000 RPM:
50A Alternator - Approx ~ 38.5 VAC +/- 1 @ 2000 RPM

NOTE: The test results obtained in step 11 can read more than specified VAC, but it is important that they are all approximately equal.

STATOR RESISTANCE INSPECTION

NOTICE

Engine must be OFF while performing this test.
NOTE: Engine OFF and cool.

1. Disconnect 3 -pin stator connector as described in Step 2 of No-Load AC Volts Inspection (page 16.11).
2. Set meter to OHMs scale.
3. Connect one lead of meter to any pin in multi-connector leading from stator and the other lead to any other pin.
4. Observe meter reading.

STATOR RESISTANCE: 0.1-0.5 Ω (see below)

NOTICE
Do not allow your hands or fingers to touch meter leads or one meter lead and any grounded portion of the motorcycle or reading obtained will be inaccurate.

NOTE: 0.3Ω to 0.5Ω ohms may be less than the internal resistance of your meter. Before measuring stator resistance, connect meter leads together and record the resistance. Subtract meter resistance from stator resistance readings.

EXAMPLE: True reading is:
.7 ohms (observed reading when checking stator)
-0.3 ohms (meter/lead resistance)
$=0.4$ ohms (true stator winding resistance
5. Repeat resistance test on all remaining combinations of the three pins A, B, and C (three measurements total).

STATOR WINDINGS TO GROUND INSPECTION

NOTE: Engine OFF and cool.

1. Disconnect 3-pin stator connector as described in Step 2 of No-Load AC Volts Inspection (page 16.11).
2. Set meter to OHMs scale.
3. Connect one meter lead to Pin A and the other to a good engine ground.
4. Observe meter reading. There should be no continuity to ground.

STATOR WINDING TO GROUND: Open Circuit (OL)
5. Repeat test for other two stator leads (Pin B and Pin C).

16.12

VOLTAGE DROP: RECTIFIER / REGULATOR TO BATTERY(+)

NOTE: Leave regulator / rectifier connected for this test.

1. Remove the electrical cover (below the oil cooler).
2. Set Digital Multi-Meter (DMM) to DC Volts scale (or 300 mV scale).
3. Connect red lead (+) of DMM to the ring terminal of the Red regulator / rectifier lead at the circuit breaker.
4. Connect black lead (-) of DMM to positive (+) battery cable at battery.
5. DMM must read below 0.1 volts $D C(100 \mathrm{mV})$. If it does read $0.1 \mathrm{~V} D C$ or less the circuit is $O . K$.

Specification: 0.1 V DC

6. If DMM reads above 0.1 volts DC there is excessive resistance in the circuit that must be corrected.
7. Possible problem areas could be the battery cable, cable end connections, cable to battery terminal connection, the ring terminal connection to the regulator rectifier red wire. Visual inspections or continued voltage drop inspections are necessary to determine the cause.

RECTIFIER / REGULATOR CONNECTOR INSPECTION

1. Disconnect 3 pin connector.

2. Inspect male and female pins in the 3-pin connector and the ring terminals of the positive (red) and negative (black) regulator / rectifier leads. Check for corrosion, loose pins, poor connections, or evidence of overheating or other damage.
3. If the wiring and connectors are undamaged and appear to be clean and tight, inspect the battery, stator, and related wiring. Test the regulator / rectifier as described in the following tests.

NOTE: Do not touch the meter leads when testing the regulator rectifier. Readings in the following chart are correct for a Fluke ${ }^{\text {TM }} 73$ multimeter. Use of other meters may affect test results.

DIODE LEAKAGE TEST

NOTE: Engine must be OFF and engine cool.
NOTE: Do not touch meter leads when testing the regulator rectifier. Readings in the following chart are correct for a Fluke ${ }^{\text {TM }}$ multimeter. Use of other meters may produce different results.

1. Disconnect regulator / rectifier (BK/RD) wire from the 40A circuit breaker terminal (battery side).
2. Reinstall nut on circuit breaker and torque to 2.8 Nm ($25 \mathrm{lb}-\mathrm{in}$).
3. Leave ground wire connected to engine.
4. Connect black meter lead to the BK/RD wire from the regulator / rectifier, and the red (+) meter lead to the circuit breaker terminal.
5. Compare leakage to specification below.

DIODE LEAKAGE: Less than 1.0 mA
16.14

REGULATOR / RECTIFIER TEST

- Remove regulator / rectifier or completely disconnect all wires (3-Pin stator connector, ground (black) from engine case, and BK/RD wire from circuit breaker terminal). Unit must be cool for accurate testing.
- Use DIODE CHECK function on the Fluke 73 DMM
- Perform all tests described in test table below. Test results describe a properly functioning part.

Regulator / Rectifier Test Table - Set DMM to DIODE CHECK Function

DMM RED LEAD	DMM BLACK LEAD	RESULT
AC Phase 1 (Pin A of 3-pin)	AC Phase 2 (Pin B of 3-pin)	Open Circuit
AC Phase 2 (Pin B of 3-pin)	AC Phase 3 (Pin C of 3-pin)	Open Circuit
AC Phase 1 (Pin A of 3-pin)	AC Phase 3 (Pin C of 3-pin)	Open Circuit
AC Phase 2 (Pin B of 3-pin)	AC Phase 1 (Pin A of 3-pin)	Open Circuit
AC Phase 3 (Pin C of 3-pin)	AC Phase 1 (Pin A of 3-pin)	Open Circuit
AC Phase 3 (Pin C of 3-pin)	AC Phase 2 (Pin B of 3-pin)	Open Circuit
Battery + Lead (Ring terminal of BK/R wire)	Ground Lead (Ring terminal of Black wire)	Open Circuit
Ground Lead (Ring terminal of Black wire)	Battery + Lead (Ring terminal of Red wire)	Open Circuit
Ground Lead (Ring terminal of Black wire)	Case	Closed Circuit (continuity)
Ground Lead (Ring terminal of Black wire)	Any Phase	Open Circuit
Any Phase	Ground Lead (Ring terminal of Black wire)	Open Circuit
Battery + Lead (Ring terminal of Red wire)	Any Phase	Open Circuit
AC Phase 1 (Pin A of 3-pin)	Battery + Lead (Ring terminal of Red wire)	400 mV to 650mV
AC Phase 2 (Pin B of 3-pin)	Battery + Lead (Ring terminal of Red wire)	400 mV to 650mV
AC Phase 3 (Pin C of 3-pin)	Battery + Lead (Ring terminal of Red wire)	400 mV to 650mV

$\longrightarrow 16$

RECTIFIER / REGULATOR REPLACEMENT

1. Remove center chin fairing (page 16.3) and electrical cover.
2. Lift cover off circuit breaker and remove positive regulator / rectifier lead from battery side terminal of breaker.
3. Remove ground screw from left front of crankcase and remove negative regulator / rectifier lead.
4. Lift tab and push forward to separate the 3-pin connector.
5. Remove regulator / rectifier mounting screws (B).

6. Remove wires from wire guides.
7. Reverse order of removal to install. Be sure mounting bracket is clean and all connections are clean and tight. Secure wires and connectors, and torque all screws.
8. Torque circuit breaker nuts to $2.8 \mathrm{Nm}(25 \mathrm{lb}-\mathrm{in})$.

STATOR REMOVAL

1. Remove primary cover (page 9.9).
2. Place primary cover on bench with padded material between primary cover and bench top.
3. Remove wiring retainer plate (A).
4. Remove three (3) socket head screws (B).
5. Remove stator from primary cover.

STATOR INSTALLATION

1. Clean stator mounting surface and screw holes in primary cover.
2. Place stator in primary cover taking care to route wires correctly in the channel.
3. Install screws and torque $12 \mathrm{Nm}(100 \mathrm{lb}-\mathrm{in})$.
4. Install grommet (C) into groove in cover and then install retainer plate. Torque screws to $5.7 \mathrm{Nm}(50 \mathrm{lb}-\mathrm{in})$.
5. Pull wires to remove any slack or loop at point (D). Wires must not protrude into flywheel rotor area.
6. Install primary cover (page 9.12).

FLYWHEEL REMOVAL
Refer to page 9.24.

NOTES
16.18
(3)

CHAPTER 17
 IGNITION

GENERAL INFORMATION 17.2
SAFETY INFORMATION 17.2
IGNITION SYSTEM SPECIFICATIONS 17.2
TORQUE SPECIFICATIONS 17.3
SPECIAL TOOLS 17.3
TROUBLESHOOTING
BASICS 17.317.3
IGNITION CIRCUIT DIAGRAM 17.4
TEST LEAD ADAPTER KIT 17.5
ECM CONNECTOR MAP 17.5
IGNITION SYSTEM TEST FLOWCHART 17.6
BATTERY VOLTAGE INSPECTION - TEST 1 17.7
SPARK INSPECTION - TEST 2 17.7
COIL HIGH TENSION LEADS - TEST 3 17.8
IGNITION COIL SIGNAL - TEST 4 17.8
IGNITION COIL RESISTANCE - TEST 5 17.9
CRANKSHAFT POSITION SENSOR (CPS) RESISTANCE INSPECTION - TEST 6 17.10
CRANK POSITION SENSOR CIRCUIT AND SIGNAL TEST 6A 17.11
CRANK POSITION SENSOR CIRCUIT CONTINUITY TEST 6B 17.11
GROUND CIRCUIT INSPECTION - TEST 7 17.11
IGNITION COIL 17.12
17.12
IGNITION COIL REMOVAL
IGNITION COIL INSTALLATION 17.12
IGNITION SWITCH REMOVAL 17.12

GENERAL INFORMATION
 SAFETY INFORMATION

There are many hazards present when working on or around the ignition system. Read and pay close attention to the following warnings and cautions when working on any component in this section.

AWARNING

Never run an engine in an enclosed area. Exhaust contains poisonous carbon monoxide gas that can cause loss of consciousness and may lead to death. If you must run the engine to do some repairs, do so in an open area or with an exhaust evacuation system operating.

ACAUTION

Some procedures call for the engine to be run in order to warm the engine to operating temperature. If this is done the exhaust pipes can "blue" if a cooling air stream is not provided by means of a shop fan directed at the exhaust system (particularly the head pipes).

$\triangle C A U T I O N$

Follow the instructions closely when troubleshooting items in this section. Some electrical components can be damaged if they are connected or discon--nected while the ignition switch is ON and current is present.

AWARNING

The engine and exhaust system become very hot during operation and remain hot for a period of time after the engine is shut off. Wear insulated protection for hands and arms or wait until the engine and exhaust system have cooled before working on the machine.

$\triangle C A U T I O N$

Parts containing semi-conductors can be easily damaged if handled carelessly. Do not drop or subject the electronic components to shock loads.

ACAUTION

Using incorrect heat range spark plugs can damage the engine. Always follow the manufacturer's recommendations for spark plug heat range.

GENERAL CAUTIONS TO OBSERVE WHEN WORKING ON IGNITION SYSTEM

- This ignition system is controlled electronically and no provisions are available to inspect or change ignition timing. A timing light is still valuable as a diagnostic tool.
- Poor connections are the most common cause of ignition problems. Inspect all connections and replace the spark plugs before doing extensive ignition system troubleshooting.
- Make sure the battery is fully charged and that the charging system is operating correctly.
- A signal from the Crankshaft Position Sensor must be present for spark to occur.

IGNITION SYSTEM SPECIFICATIONS

Ignition Specifications		
Item		Specifications
Spark Plug		NGK DCPR6E
Spark Plug Gap		0.8 mm (. 032 in .)
Ignition Coil Resistance	Primary	$0.3-0.6$ Ohms $\pm 20 \%$
	Secondary	See coil test page 17.9
	Plug Wire (with cap*)	Front: 4360-5780 Ohms** / Rear 4080-5050 Ohms**
Crank Position Sensor Resistance		280 Ohms $\pm 10 \%$ (No short to ground)
- Spark plug end caps are not removable **See page 17.8 for test procedure		

17.2

IGNITION

TORQUE SPECIFICATIONS

Fastener Torque Specifications - Ignition System			
Description	Torque Nm	Torque lb-ft (in-lb)	Notes
CPS Screws (to cover)	6.8 Nm	$(60 \mathrm{lb}-\mathrm{in})$	
Ignition Coil to Frame	11 Nm	$(100 \mathrm{lb}-\mathrm{in})$	
Spark Plug	11 Nm	$(100 \mathrm{lb}-\mathrm{in})$	Apply Anti-Seize
Timing Wheel Bolt (on RH end of crankshaft)	28 Nm	$17 \mathrm{lb}-\mathrm{ft}$	
Rotor (Flywheel) Bolt	102 Nm	$75 \mathrm{lb}-\mathrm{ft}$	

SPECIAL TOOLS

SPECIAL TOOL	PART NUMBER
Connector Test Lead Adapter Kit	PV-43526
Fluke $73^{\text {TM }}$ Digital Multimeter	PV-43546
Inductive Timing Light	PV-43537

TROUBLESHOOTING

BASICS

Before troubleshooting the ignition system, ensure that the engine stop switch is in the run position, that the battery is fully charged, and that system related fuses are not open (blown). Check visually for corroded, loose, or broken connections in critical areas such as the sensor connector itself, or at the engine-to-chassis harness 14 pin connector. Check for loose wire pins in the individual sensor connectors and at the ECM (under the seat).

The Ignition System Troubleshooting flow chart (and the accompanying text) is designed to help you troubleshoot ignition system problems. It will not lead you to faulty or fouled spark plugs. Always inspect spark plug condition first (and replace if necessary) when troubleshooting ignition system problems.

Be sure that the spark plugs are the correct heat range and are the specified resistor spark plugs. Non-resistor spark plugs can introduce electrical problems due to increased Radio Frequency Interference (RFI).

WARNING

Extremely high voltage is present in the ignition system. Do not touch the ignition coil, wires or spark plugs during test procedures.

IGNITION CIRCUIT DIAGRAM

TEST LEAD ADAPTER KIT

1. Tests in this section may include the testing of voltage and/ or resistance at the connectors for various sensor and system components. Use the appropriate test adapter lead when performing these tests at connector pin(s).
2. Forcing an incorrect or oversized probe into a connector may damage, misalign, or expand the connector pin or socket. It can also damage the connector housing, creating another problem which greatly complicates the diagnostic process. Extreme care must be taken not to introduce problems while probing a connector.

Test Lead Adapter Kit: PV-43526 or suitable Fluke test adapter leads.

A CAUTION

Once the ECM connector has been separated from the ECM, do not touch the ECM pins. Static electricity from your body can damage the ECM. Do not attempt to perform tests on the ECM. Tests are done on socket side of the connector. Views of the 60 pin connector in this Chapter are from the WIRE side of the connector.
3. The ECM connector is marked $1,30,31$, and 60 on the wire side of the connector. Refer to the diagram below for a description of wire location / function, and wire colors.
4. Use the information on the following pages to perform ignition system related tests at ECM connector or component.

ECM CONNECTOR MAP

Refer to page 5.37 to remove connector from ECM.

IGNITION RELATED ECM CONNECTOR MAP
System related wire color \& pin number shown. Refer to wiring diagram for complete information.

$\mathrm{BN}=$ Brown $; \quad \mathrm{GN}=\mathrm{Green} ; \quad \mathrm{BK}=$ Black $; \quad \mathrm{GY}=\mathrm{Gray} ; \quad \mathrm{PK}=$ Pink; $\quad \mathrm{R}=$ Red; $\quad \mathrm{VIO}=$ Violet $; \quad \mathrm{W}=$ White

VERIFY TERMINAL PINS ARE NOT LOOSE IN CONNECTOR AND WIRE CONNECTION TO TERMINAL PIN IS SECURE. NOTE: CONNECTOR IS MARKED WITH NUMBERS 1, 30, 31, and 60 ONLY.

IGNITION SYSTEM TEST FLOWCHART

17.6

BATTERY VOLTAGE INSPECTION - Test 1

1. Access battery area at front of motorcycle.
2. Set Digital Multimeter (DMM) to DC Volts.

3. Inspect battery voltage.
4. If the battery voltage is below 12.5 Vdc , charge or replace the battery with a fully charged battery. Refer to Chapter 16 for battery inspection, battery charging and charging system inspection.

NOTE: When operating the starter with a low battery, the voltage available for the ignition coils can drop below the minimum required to produce spark.

SPARK INSPECTION - TEST 2

1. Connect an inductive timing light to one spark plug wire.

Inductive timing light PV-33277-A

2. Turn ignition switch and engine stop switch ON .
3. Shift transmission into neutral and pull in clutch lever.
4. Depress starter button and observe timing light.
5. Determine if timing light flashes without interruption for both cylinders.
6. Consistent flashes indicate some secondary voltage is present. The likelihood of an ignition related problem is reduced but not eliminated. Keep the following points in mind:

- There is a threshold voltage and current required for timing lights below which they will not trigger and therefore, not flash.
- Fouled spark plugs may drop secondary voltage so low that a timing light will not trigger.
- With no current flowing (open secondary side of the ignition coil) the timing light will not flash.
- A faulty high tension lead (plug wire) or poor connection is one example of an open secondary.

7. Replace spark plugs, connects plug wires and re-test.
8. If timing light does not flash consistently for one or both cylinders, test high tension leads (Test 3).

NOTE: The plug caps or coil ends are NOT removable. Wire must be replaced as an assembly.

COIL HIGH TENSION LEADS - Test 3

CAUTION

Do not attempt to remove the spark plug caps from the spark plug high tension leads. Spark plug caps are molded to plug wires and available only as an assembly. Wire resistance specifications includes the resistance of the spark plug caps.

1. Remove high tension leads (HTL) by pulling firmly on the boots at the coil and spark plug. DO NOT pull on the wire or HTL may be permanently damaged.

NOTE: The ignition coil end of the wire is coated with a film of dielectric powder. Apply dielectric grease to this connection if powder film is cleaned or removed.

2. Test each high tension lead with an ohmmeter and compare to specification. Move wire to detect internal breaks or poor connections at terminal ends.

High Tension Lead Resistance
Front: 4360-5780 Ω
Rear: 4080-5050 Ω

IGNITION COIL SIGNAL - Test 4

Power To Ignition Coil

Battery voltage must be present at the ignition coil during fuel pump initial cycle, during cranking, and with the engine running.

1. Remove ignition switch cover (Chapter 3).
2. Press tab (A) and disconnect coil harness.

3. Place DMM selector dial on Volts DC scale.
4. Connect black lead to ground (on engine).
5. Connect a small thin test adapter lead to center terminal of ignition coil primary connector and positive ${ }^{(+)}$meter lead to the test adapter.

6. With engine stop switch OFF, turn ignition key ON.
7. Turn engine stop switch to RUN. Battery voltage should appear on center terminal of connector for 2-3 seconds until the pump completes its prime cycle.
8. With transmission in Neutral, crank the engine. Battery voltage should again be present on the terminal.

Test 4 (Cont.)

ECM (Ground) Signal To Ignition Coil

ECM ground signal must be present at each outer terminal of the connector. The signal will appear as a pulse on the meter bar graph with DMM selector in the OHMs position.

1. Place the DMM selector dial on the OHMS scale.
2. Place a small thin test adapter into one outer terminal of the connector (either WH/BK or WH/DG wire) and connect one meter lead to the test adapter (B).

3. Connect the other meter lead to engine ground.
4. Place transmission in Neutral.
5. Turn ignition key ON and engine stop switch to RUN.
6. Crank engine with electric starter and watch bar graph on the Fluke 73 DMM. Bar graph should pulse while engine cranks, indicating a ground signal is present.

7. Repeat test on other outside wire of connector.

- If no pulse is present, test Crankshaft Position Sensor (Test 6).
- If signal is present on one wire and not the other, test related wiring and connections.
- If both signals are present and there was battery voltage on the VION wire (center terminal) but still no spark, test ignition coil windings. (Test 5).

IGNITION COIL RESISTANCE - Test 5

Ignition Coil Primary Winding

1. Remove ignition coil (page 17.12).
2. Select OHMS function of DMM.
3. Measure resistance between terminal 3 and terminal 2 on the coil. Compare to specification.
4. Measure resistance between terminal 1 and terminal 2 on the coil. Compare to specification.

Primary Resistance: 0.4-0.6 Ω
(Be sure to subtract meter lead resistance from measurement

Ignition Coil Secondary Windings

1. Remove ignition coil (page 17.12).
2. Select DIODE CHECK function of DMM.
3. Place red DMM lead on center terminal (\#2) of coil primary and black lead on secondary terminal and record.
4. Move black DMM lead to the other secondary terminal and record. (Reading should be the same for both secondary windings).
(Cont.)

Ignition Coil Secondary Windings (TEST 5. Cont.)

5. Repeat measurements on each secondary coil with meter leads reversed.
6. Compare readings to specification. Resistance should be low with leads one way and OL with leads reversed.

CRANKSHAFT POSITION SENSOR (CPS) RESISTANCE INSPECTION - Test 6

NOTE: This test can also be performed at the ECM connector, to test the entire circuit with the sensor. See test 6A (page 17.11).

1. Disconnect Crankshaft Position Sensor (connector is located at rear of engine).
2. Visually inspect sensor wire harness for damage, and loose or broken wires or connector pins.
3. Select OHMS function of DMM.
4. Measure resistance through CPS coil by connecting a test adapter lead (C) to sensor wires and to meter leads (D).

Specification: $\mathbf{2 8 0 \Omega}$ @ $20^{\circ} \mathrm{C}, 68^{\circ} \mathrm{F}(+1-\mathbf{2 0} \%)$
5. Remove lower right engine cover (timing cover).
6. Visually inspect center pole (E) of crankshaft position sensor for damage or metal particles clinging to the magnet. Be sure dowel pins (F) are in place on the cover (or crankcase) and check for physical damage to sensor or timing wheel that may affect air gap.

IGNITION

CRANK POSITION SENSOR CIRCUIT and SIGNAL Test 6A

NOTE: A test lead adapter kit is required to prevent connector pin, socket, or case damage.
Connector Test Lead Adapter Kit PV-43526 or suitable Fluke test adapter leads

1. Turn ignition key OFF.
2. Remove left side cover.
3. Remove ECM connector from ECM (page 5.37).
4. Select OHMS function on the DMM (Ω).
5. Connect test adapter leads to the DMM leads.
6. Place one test adapter lead in pin 57 and the other in pin 58 of the ECM connector (not the ECM). Compare resistance to specification.

Specification: 280Ω @ $20^{\circ} \mathrm{C}, 68^{\circ} \mathrm{F}(+/-20 \%)$

CPS AC Signal Test

7. With leads connected as for the resistance test (pin 57 and 58 of the ECM connector), select Volts AC function on the DMM.
8. Turn engine over with electric starter and observe DMM display.
9. With spark plugs installed voltage reading will be erratic due to low rpm and pulsing nature of the signal. The numerical display will be erratic. Watch bar (A) at bottom of display to determine if a signal exists. Any fluctuating AC signal is correct for this test.

10. Remove spark plugs from engine. Install spark plugs into spark plug caps and ground the spark plug electrodes securely to the engine.
11. Measure $A C$ voltage signal from crank position sensor while turning engine over using electric starter with spark plugs out and compare to specification.

Specification: 2-5 V AC (Spark Plugs Out)

CRANK POSITION SENSOR CIRCUIT CONTINUITY Test 6B

1. Check all pin connectors between sensor and ECM for a good mechanical connection.
2. Inspect wiring for damage causing an open circuit.

GROUND CIRCUIT INSPECTION - Test 7

1. Set DMM to OHMS.
2. Connect one meter lead to negative (-) post of battery.
3. Connect other meter lead to main ground locations. Refer to electrical schematic for locations.
4. At each ground test point, resistance should be less than 5 OHMS.

IGNITION COIL

IGNITION COIL REMOVAL

1. Turn ignition switch OFF and remove key.
2. Pull ignition coil cover (A) straight outward to remove.
3. Remove both high tension leads (B) from coil.

4. Remove screw (C) and ignition coil. To remove coil with bracket, remove 2 screws (D).
5. Press tab (E) to remove primary connector.

6. Remove ignition coil.

IGNITION COIL INSTALLATION

1. Installation procedure is the reverse of removal procedures.
2. Apply light film of dielectric grease inside the spark plug boot of high tension leads.
3. Torque coil mount screw (or screws if coil was removed with bracket attached) to $9 \mathrm{Nm}(84 \mathrm{lb}-\mathrm{in})$.

IGNITION SWITCH REMOVAL

1. Turn ignition switch OFF and remove key.
2. Pull ignition coil cover straight outward to remove.
3. Remove mounting screw from face of switch bracket.
4. Open or cut any tie straps that secure the harness.
5. Separate ignition switch connector from main wire harness by pushing the tab to release.

17.12

CHAPTER 18 ELECTRIC STARTER

GENERAL 18.2
SPECIFICATIONS 18.2
STARTER SPECIFICATIONS 18.2
FASTENER TORQUE SPECIFICATIONS 18.2
SPECIAL TOOLS 18.3
STARTER SYSTEM SPECIAL TOOLS 18.3
DIAGNOSTICS
TROUBLESHOOTING FLOW CHART MENU 18.318.3
STARTER CIRCUIT DIAGRAM 18.4
TROUBLESHOOTING FLOW CHART 1 18.5
TROUBLESHOOTING FLOW CHART 2 18.6
TROUBLESHOOTING CHART 3 18.6
BATTERY INSPECTION \& CHARGING PROCEDURES 18.7
BATTERY LOAD TEST 18.7
CIRCUIT \& SWITCH TESTING 18.7
STARTER RELAY GROUND BYPASS CIRCUIT TEST 18.7
NEUTRAL SWITCH BYPASS TEST 18.8
CLUTCH SWITCH / CIRCUIT TEST 18.9
CLUTCH SWITCH REMOVAL 18.10
CLUTCH SWITCH INSTALLATION 18.10
STARTER RELAY TO STARTER MOTOR POSITIVE CABLE BYPASS TEST 18.10
STARTER RELAY POSITIVE CIRCUIT TEST 18.11
STARTER RELAY BYPASS TEST 18.11
STARTER RELAY TO STARTER MOTOR POSITIVE CABLE BYPASS TEST 18.12
POSITIVE SIDE VOLTAGE DROP TEST 18.13
NEGATIVE CABLE BYPASS TEST 18.15
NEGATIVE SIDE VOLTAGE DROP TEST 18.16
STARTER CURRENT DRAW TEST 18.18
STARTER MOTOR REMOVAL 18.19
STARTER MOTOR INSTALLATION 18.19
STARTER CLUTCH REMOVAL 18.19
18

GENERAL

SAFETY INFORMATION

Abstract

\section*{A. WARNING}

Always disconnect the battery (negative terminal first) before servicing the starter motor. - Inspect the condition of the battery before troubleshooting the starter system. Also inspect main engine ground (on crankcase - upper left rear corner) and battery cable connections.

SPECIFICATIONS

STARTER SPECIFICATIONS

ELECTRIC STARTER \& STARTER CLUTCH		
Item	Standard	Service Limit
Battery Voltage (Open Circuit Voltage)	Above 12.5 Vdc	-
Commutator Resistance:		
Between Any Two Bars	Continuity (0 Ohms)	-
Any Commutator Bar to Armature Shaft	Infinity (OL on Fluke ${ }^{\text {TM }}$ 73)	-
Battery Input Terminal Resistance to Insulated Brush	Continuity (0 Ohms)	-
Battery Cable Terminal Resistance to Motor Case	Infinity (OL on Fluke ${ }^{\text {TM }} 73$)	-
Starter Motor Brush Length	$\begin{aligned} & 13 \mathrm{~mm} \pm 0.5 \mathrm{~mm} \\ & \left(0.512 \pm 0.020^{\circ}\right) \end{aligned}$	$\begin{aligned} & \hline 6.5 \mathrm{~mm} \\ & \left(0.255^{\prime \prime}\right) \end{aligned}$
Starter Motor Operating Amp Draw	90-120 Amps	Use inductive ammeter
Starter Motor No Load Amp Draw (Bench Test)	30-40 Amps after initial surge	-
Starter Torque Limit Clutch Break-Away Torque	50 lb -ft when new	35-45 lb-ft after break-in
Voltage Drop Allowed: Each Connection - Pos Circuit	0.2 V DC (200 millivolts)	-
Voltage Drop Allowed: Each Connection - Neg Circuit	0.2 V DC (200 millivolts)	-
Total Voltage Drop Allowed - Pos Side Of Starter	0.3 V DC (300 millivolts)	-
Total Voltage Drop Allowed - Neg Side Of Starter	0.3 V DC (300 millivolts)	-

FASTENER TORQUE SPECIFICATIONS

TORQUE SPECIFICATIONS - STARTER SYSTEM		
Description	Torque Nm	Torque lb-ft (in-lb) \& Notes
Bearing Cover Screws (starter gear cover)	10 Nm	(85 in-lb)
Electrical Terminal (+) to Starter Motor	6.8 Nm	(60 in-lb)
Gear Position Switch (to crankcase)	2.8 Nm	(25 in-lb)
Positive Cable (+) to Motor Terminal	6.8 Nm	(60 in-lb)
Primary Drive Gear Bolts (to Crankshaft)	41 Nm	$30 \mathrm{lb}-\mathrm{ft}$. Clean crankshaft threads thoroughly. Install new bolts.
Regulator / Rectifier Screws	10 Nm	(85 in-lb)
Rotor Bolt (Flywheel)	102 Nm	$75 \mathrm{lb}-\mathrm{ft}$
Starter Motor to Crankcase Bolts	30 Nm	$22 \mathrm{lb}-\mathrm{ft}$
Starter Motor Case Screws	10 Nm	(85 in-lb)

18.2

SPECIAL TOOLS

STARTER SYSTEM SPECIAL TOOLS

SPECIAL TOOL	PART NUMBER
Digital Multi-Meter	PV-43546
Optional Amp Meter Inductive Clamp	PV-39617
Rotor Puller (Flywheel)	PV-43533
Engine Stop Tool	PV-43502
Connector Test Adapter Kit	PV-43526

DIAGNOSTICS

TROUBLESHOOTING FLOW CHART MENU

Symptom	Possible Cause	Refer To:
Starter motor does not turn with transmission in neutral. Turns with clutch pulled in.	Neutral switch or circuit malfunction	Test Neutral Switch (page 18.8)
Starter motor does not turn with transmission in gear and clutch lever pulled in. Turns with transmission in neutral.	Clutch switch or circuit malfunction, Reverse Switch (if equipped) or circuit malfunction.	Test Clutch Switch (page 18.9) and reverse switch (Chapter 19).
Starter motor will not turn	Low battery voltage. Starter button faulty. Poor cable connections. Main engine ground loose (frontleft corner of crankcase under the electrical cover).	See Troubleshooting Flow Chart 1 (page 18.5)
Starter motor turns slowly. Engine may or may not start.	Low battery. Faulty starter motor or drive mechanism. Engine mechanical problem.	See Troubleshooting Flow Chart 2 (page 18.6)
Starter motor turns, but engine does not turn.	Starter torque limit clutch slipping (Chapter 9).	See Troubleshooting Flow Chart 3 (page 18.6)
Starter motor turns at normal speed, but engine does not start.	Ignition Problem Engine Problem Fuel Delivery Problem	Chapter 17 Chapter 7-10 Chapter 5

ELECTRIC STARTER

STARTER CIRCUIT DIAGRAM

18.4

TROUBLESHOOTING FLOW CHART 1

WARNING
Ensure that motorcycle is secure and transmission is in neutral for all tests.

Ensure that motorcycle is secure and transmission is in neutral for all tests.

A. CAUTION

Inspect fuses and make sure battery is fully charged before inspecting starter system.

TROUBLESHOOTING FLOW CHART 2

Starter Motor Turns Slowly, Engine May or May Not Start

NOTE: Diagnostics require a Digital Multi Meter with a high current shunt or an inductive ammeter clamp.

TROUBLESHOOTING CHART 3

Symptom	Possible Cause	Possible Reason and/or Inspection Needed
Starter motor turns, but engine does not turn. The starter motor can be heard spinning.	Starter clutch malfunction.	Refarter torque limit clutch slipping.

18.6

BATTERY INSPECTION \& CHARGING PROCEDURES

1. Refer to Chapter 16.

BATTERY LOAD TEST

1. Load test battery using a commercially available battery load tester. Follow the battery load tester manufacturer instructions.
NOTE: Although not as conclusive, the following test can be used to direct troubleshooting efforts if a battery load tester is not readily available.
2. Charge battery until open circuit voltage is above 12.5 Vdc (page 18.7).
3. Install battery and connect battery cables.
4. Connect digital multimeter to battery and keep it connected for duration of test.
5. Turn ignition key on and move head light high beam switch to High Beam for 1 minute (without the engine running).

6. Turn ignition off. Measure battery voltage.
7. If battery voltage drops below 10.5 Vdc , re-charge and re-test battery or replace it.

CIRCUIT \& SWITCH TESTING
 STARTER RELAY GROUND BYPASS CIRCUIT TEST

	WARNING
Verify that motorcycle is secure and that transmission is in neutral for the following inspection.	

1. Shift transmission to Neutral.

NOTE: Shifting transmission to neutral or pulling in the clutch lever provides a ground path for the starter relay. This test will temporarily bypass these components. Refer to Starter Circuit Diagram on page 18.4.
2. Back-probe the Blue $/$ Yellow wire (A) at the solenoid connector (shown disconnected) and connect it to a ground (Solenoid connector must remain assembled).
3. Turn ignition switch ON and place engine stop switch in RUN position.
4. Press starter button. If starter motor turns, inspect clutch switch (page 18.9) and gear position switch page 18.8).
5. If starter motor does not turn, inspect button by performing the STARTER RELAY POSITIVE CIRCUIT TEST on 18.11.

NEUTRAL SWITCH BYPASS TEST

The symptom of a faulty neutral switch circuit is:

- Starter motor will not operate when transmission is in neutral with clutch lever released.
- Starter will operate when clutch is pulled in.

1. Turn ignition switch on and place engine stop switch in the RUN position.
2. Shift transmission into Neutral.
3. Observe neutral indicator light.
4. If indicator is not working with transmission in neutral:

- Disconnect neutral / gear indicator switch (B).

NOTE: When the gear position switch is disconnected, the symbol " N " will display on the information display regardless of gear position (with Key ON).

- Connect Black/Pink of harness side connector pin to ground on engine (not switch side of connector) with a jumper lead. This provides a path to ground for the neutral light.

5. If the neutral lamp comes on, the gear position switch or wiring between connector and switch is at fault. Continue to Step 6 to test the gear position switch.
6. Set meter to measure resistance.
7. Place one meter lead on Black/Pink wire on switch side of connector.

8. Connect the other lead to engine ground.
9. Compare reading to Table 1 below.
10. Replace neutral switch or repair wiring as necessary.
11. If neutral switch is working correctly and neutral indicator did not light with the harness wire grounded, inspect neutral lamp circuit wiring and connectors for an open circuit.

If switch is faulty, refer to Gear Position Switch Removal / Installation (Chapter 19).

TABLE 1-TESTING NEUTRAL PORTION OF GEAR POSITION SWITCH			
Gear Position	Meter Probe \#1	Meter Probe \# 2	Ohmmeter Reading*
Neutral	Black/Pink (switch side of connector)	Crankcase (ground)	$\leq .5 \Omega$
Any Gear - Other Than Neutral	Black/Pink (switch side of connector)	Crankcase (ground)	OL
* Be sure to subtract meter probe resistance from resistance reading			

CLUTCH SWITCH / CIRCUIT TEST

Refer to Starter Circuit Diagram on page 18.4.
Symptom of a faulty clutch switch circuit:

- Starter motor will not operate with transmission in gear and clutch lever pulled in. Starter operates with transmission in neutral.

Use an ohmmeter to determine if continuity is present when the switch is closed (lever pulled in).

1. Transmission can be in neutral or in any gear.
2. Separate the $\mathbf{2}$ pin connector (A) from starter solenoid.
3. Set meter to measure ohms (Ω).
4. Connect red (+) lead of DMM to Blue/Yellow wire in connector on harness side using a test probe (A) from Victory Connector Test Kit PV-43526.
5. Connect black meter lead to battery negative post or ground.
6. Operate clutch lever while observing meter display:

- Pull clutch lever to the handlebar. Meter should display continuity or very low resistance (less than 1 ohm) when the clutch switch closes.

- Release clutch lever, meter should display a higher resistance in the range of $2 \mathrm{~K}-9 \mathrm{~K}(2000-9000 \Omega)$.

7. If clutch switch does not test as described, inspect clutch switch, clutch switch wiring or mounting of switch to clutch lever for faults.
8. Disconnect switch wiring connector at handlebar.

9. Connect ohmmeter across the outer 2 terminals of clutch switch:

- Test for continuity when clutch lever is pulled to handlebar.
- Test for high resistance with lever released.

10. If switch tests correctly at connector, check circuit between clutch lever switch and starter relay, including the LH bar switch connector.
11. If switch fails test, inspect mounting of switch.
12. If switch is mounted correctly and physically operates but does not open and close electrically, replace switch.

CLUTCH SWITCH REMOVAL

1. Disconnect wire harness at the switch (B).
2. Remove retaining screw (C). Pull clutch lever and secure it to the handlebar. Remove switch.

CLUTCH SWITCH INSTALLATION

1. Pull clutch lever and secure to handlebar.
2. Install switch and retaining screw. Torque to specification.
3. Connect wire harness.
4. Release clutch handle.
5. Verify proper operation.

STARTER RELAY TO STARTER MOTOR POSITIVE CABLE BYPASS TEST

A. WARNING

Secure motorcycle and place transmission in neutral for the following test.

A warning

The following test involves high current, heat and possible sparks. Wear a face shield and approved safety glasses while doing the following test.

1. Place the transmission in neutral.
2. Connect one clamp of a heavy-duty, automotive remote starter switch to positive terminal lug at starter motor

Remote Starter Switch
3. Connect other clamp of remote starter switch to positive terminal of battery.

4. Make sure transmission is in neutral, key switch off and stop switch off.
5. Pull in clutch lever and depress the remote starter switch momentarily.
6. If starter turns, there is excessive resistance in the positive, high current side of the starter system. Go to Positive Side Voltage Drop Test.
7. If starter does not turn, go to Negative Cable Bypass Test.

STARTER RELAY POSITIVE CIRCUIT TEST

WARNING

Secure motorcycle and place transmission in neutral for the following test.

Refer to Starter Circuit Diagram on page 18.4.

1. Place the transmission in neutral.
2. Remove electrical cover.
3. Separate connector at starter relay.
4. Set DMM to DC Volts.
5. Check battery voltage by testing across battery terminals. Voltage reading should be at or above 12.5 Vdc.
6. Connect red (+) lead of DMM to the Yellow / White wire of the starter relay wiring harness connector (A) using a test probe from Victory Connector Test Kit PV 43526.

7. Connect DMM black lead to battery negative post.
8. Turn ignition key ON and Engine Stop Switch to RUN position.
9. Press starter button. The meter should display battery voltage. If voltage is more than .2 volts below battery voltage, inspect the power supply circuit.
10. If no voltage is present on the wire, check for power on pin 3 of the right handlebar switch connector (located under the console in front of the handlebars).
11. If power is present on the BK/R wire (pin 3) press the start button to determine if power is supplied to the Y/W wire. Check for good continuity through the start button (pin 3 to pin 4 on the switch side connector) and for good continuity from switch to starter relay connector on the Y/W wire.

STARTER RELAY BYPASS TEST

A. WARNing

Secure motorcycle and place transmission in neutral for the following test. Be sure the transmission is in neutral!

A warning

The following test involves high current, heat and possible sparks. Wear a face shield and approved safety glasses while doing the following test. Only use the tool recommended to prevent excessive heat and possible burns.

1. Place the transmission in neutral.

2. Remove the electrical cover to access the solenoid on the back of the battery box.
3. Connect one lead of a remote starter switch to one of the main battery terminal posts on the relay and the other lead to the other main terminal post on the relay.

4 CAUTION

Do not allow the metal clips of the remote starter relay switch to touch each other and short out.
4. Depress button on remote starter switch.
5. If starter motor operates, and the Positive Circuit Test, Clutch Switch Test, and Neutral Switch Test have passed inspection, replace the relay.
6. If the starter motor does not operate, inspect cables by performing tests on following pages.

STARTER RELAY TO STARTER MOTOR POSITIVE CABLE BYPASS TEST

WARNING

> The following test involves high current, heat and possible sparks. Wear a face shield and approved safety glasses while doing the following test.

1. Place the transmission in neutral.

2. Connect one clamp of a heavy-duty, automotive remote starter switch to positive terminal lug at starter motor.
3. Connect other clamp of remote starter switch to positive terminal of battery.

A warning

Do not allow any part of the jumper cable clamp to touch the chassis or any other ground. Be sure transmission is in neutral.
4. Make sure transmission is in neutral, key switch off and stop switch off.
5. Pull in clutch lever and depress the remote starter switch momentarily.
6. If starter turns, there is excessive resistance in the positive, high current side of the starter system. Go to Positive Side Voltage Drop Test.
7. If starter does not turn, go to Negative Cable Bypass Test.

POSITIVE SIDE VOLTAGE DROP TEST

Symptoms: Starter motor does not turn or turns slowly when starter relay is bypassed. Starter motor works correctly when performing Starter Relay Positive Cable Bypass Test.

CAUTION
The ignition system must be disabled when doing
voltage drop tests, if engine starts it will be difficult to
measure voltage drop. To disable ignition system
quickly and safely, observe the following steps.

1. Remove spark plug caps.
2. Install test spark plugs or plugs with the gap CLOSED into plug caps.
3. Ground spark plug center electrode to engine.

NOTE: *The total voltage drop between the battery (+) and starter motor must not exceed $0.3 \mathrm{Vdc}(300 \mathrm{mV})$.

POSITIVE SIDE VOLTAGE DROP TESTS	
Location	Allowable Voltage Drop
Battery (+) To Starter (+)	$0.3 \mathrm{Vdc}(300 \mathrm{mV})$
Battery (+) to Battery Side of Relay	$0.2 \mathrm{Vdc}(200 \mathrm{mV})^{*}$
Across Relay	$0.2 \mathrm{Vdc}(200 \mathrm{mV})^{*}$
Starter (+) to Starter Side of Relay	$0.2 \mathrm{Vdc}(200 \mathrm{mV})^{*}$

A caution

Only operate starter long enough to stabilize the reading on the DMM (less than 10 seconds). Let starter motor cool down between each voltage drop test to prevent damage to starter motor.
4. Place transmission in neutral.

7. Place the other lead of the DMM to starter motor positive terminal screw.
8. Turn ignition switch on, turn engine stop switch to run position. Pull in clutch lever.
9. Operate the starter normally (no jumper cables in place) and observe meter display.
10. If DMM reads more than $0.3 \mathrm{Vdc}(300 \mathrm{mV} \mathrm{DC})$ when the starter motor is engaged, it indicates that there is excessive resistance in the starter's battery positive path. Continue with the following tests to isolate each section of the positive path and observe the voltage drop with DMM leads placed as indicated.
(Cont.)
5. Set DMM to DC Volts.
6. Place one lead of DMM to positive battery post.
11. Place one lead of DMM to positive battery post. Ensure DMM is set to read DC Volts.

12. Place other lead of DMM to relay terminal leading to battery.
13. Engage starter and observe meter display, it should read less than $0.2 \mathrm{Vdc}(200 \mathrm{mV}$ DC).
14. If voltage drop is observed, the cable, connection at the battery or connection at the relay is causing resistance and must be corrected.
15. Inspect cable ends for corrosion where cable is connected to terminal lugs.
16. Remove cable. Set the DMM to read Ohms.
17. Place DMM leads at both ends of the cable and measure the cable's resistance. The resistance should be 0 ohms. Replace cable if necessary.
18. Inspect battery post, battery cable lug and relay lug for corrosion or looseness.

NOTE: Corrosion has resistance that limits or stops the flow of current to the starter motor.
19. If corrosion is found, wash all connections with a solution of baking soda and water, wire brush all contact areas, apply a light film of dielectric grease to the hardware and tighten connections. Retest to verify problem has been corrected.

20. Place one lead of DMM to battery side of relay. Reset DMM to read DC Volts if necessary.
21. Place other lead to starter motor side of relay.
22. Engage starter and observe meter display; it should read less than $0.2 \mathrm{Vdc}(200 \mathrm{mV}$ DC).
23. If voltage drop is observed, remove cables and clean cable terminals and relay terminals. Reattach cables. Retest voltage drop.
24. If voltage drop is still observed through the relay, replace relay.
(Cont.)
25. Place one lead of DMM to starter motor side of relay. Ensure DMM is set to read Volts DC.

26. Place other lead of DMM to starter motor positive terminal.
27. Engage starter and observe meter display.
28. If voltage drop is observed, cable connection at relay or connection at starter motor is causing resistance and must be corrected.
29. Inspect cable ends for corrosion where cable is connected to terminal lugs.
30. Remove cable. Set DMM to read Ohms.
31. Place DMM leads at both ends of cable and measure cable resistance. The resistance should be 0 ohms. Replace cable if necessary. Remember to subtract test lead resistance.
32. Inspect starter cable lug and relay lug for corrosion or looseness.
33. If corrosion is found, wash all connections with a solution of baking soda and water, wire brush all contact areas, apply a light film of dielectric grease to hardware and tighten connections. Retest to verify problem has been corrected.

NEGATIVE CABLE BYPASS TEST

1. Place transmission in neutral.

2. Remove electrical cover.
3. Connect one clamp of an automotive type jumper cable (heavy gauge jumper cable) to battery negative post.
4. Connect other end of jumper cable to a good ground location on starter motor body.
5. Make sure transmission is in neutral. Turn ignition key and stop switch on. Pull clutch lever in and attempt to start motorcycle.
6. If starter motor turns, there is excessive resistance in the negative, high current side of the starter system. Perform Negative Side Voltage Drop Test.
7. If starter does not turn and all troubleshooting steps have led to this test, replace starter motor.

NEGATIVE SIDE VOLTAGE DROP TEST

NEGATIVE SIDE VOLTAGE DROP TESTS	
Location	Allowable Voltage Drop
Battery (-) To Starter Body (-)	0.3 Volts DC $(300 \mathrm{mV})$
Battery (-) to Battery Cable Ground Connection At Engine	0.2 Volts DC $(200 \mathrm{mV})^{*}$
Battery Cable Ground Connection To Starter Body (-)	0.2 Volts DC $(200 \mathrm{mV})^{*}$

NOTE: *The total voltage drop of these two items must not exceed 0.3 Volts DC $(300 \mathrm{mV})$.

A. CAUTION

Only operate the starter long enough to stabilize the reading on the DMM (less than 10 seconds running time). Let starter motor cool down between each voltage drop tests to prevent damage to starter motor.

Disable the ignition system so engine will not start during this test.

- Remove spark plug caps
- Install test spark plugs or plugs with the gap closed into plug caps.
- Ground center electrode of spark plugs to engine.

1. Place transmission in neutral.

2. Set DMM to DC Volts.
3. Place one lead of DMM to negative battery post.
4. Place other lead of DMM to a clean ground on starter motor body.
5. Turn ignition switch ON and engine stop switch to RUN position. Pull clutch lever in.
6. Operate starter normally (no jumper cables in place) and observe meter display.
7. If DMM reads more than 0.3 Volts DC when starter motor is engaged, it indicates that there is excessive resistance in the starter's battery negative path. Continue with the following tests to isolate each section of the negative path and observe the voltage drop with DMM leads placed as indicated.
8. Place one lead of the DMM to the negative battery post. Ensure that the DMM is set to read DC Volts.
9. Place the other lead of the DMM to the battery cable engine ground connection.
(Cont.)
10. Engage the starter and observe the meter display, it should read less than 0.2 Volts DC (200 mV DC).

11. If voltage drop is observed, the cable, connection at the battery, connection at the engine or mounting surface of the starter motor body is causing resistance and must be corrected.
12. Inspect the cable ends for corrosion where cable is connected to battery or engine.
13. Remove the cable. Set the DMM to read Ohms.
14. Place the DMM leads at both ends of the cable and measure the cable's resistance. The resistance should be 0 ohms. Remember to subtract meter lead resistance. Replace the cable if necessary.
15. Inspect the battery post, battery cable lug and engine battery cable mount for corrosion or looseness.
16. If corrosion is found, wash all connections with a solution of baking soda and water, wire brush all contact areas, apply a light film of dielectric grease to the hardware and tighten connections. Retest to verify problem has been corrected.
17. Place one lead of DMM to battery cable mount at engine. Reset the DMM to read DC Volts if necessary.
18. Place the other lead on starter motor body.
19. Engage the starter and observe the meter display, it should read less than 0.2 Volts DC (200 mV DC).
20. If voltage drop is observed, there is resistance between the battery cable connection at engine and the mounting surfaces of the starter motor. While this would be unusual, it is possible.

21. Remove and clean the connection between ground battery cable and engine.
22. Remove the starter and ensure that the starter is making firm contact with engine. Ensure that the starter mounting bolts are tight.
23. If corrosion is found, wash all connections with a solution of baking soda and water, wire brush all contact areas, apply a light film of dielectric grease to the hardware and tighten connections. Retest to verify problem has been corrected.

STARTER CURRENT DRAW TEST

A warning

Do not allow any part of the jumper cable clamp to touch the chassis or any other ground.

A. CAUTION

Disable the ignition system so that the engine will not start during this test.

Remove spark plug caps.
Install test spark plugs into plug caps.
Ground spark plugs against engine.

1. Inspect the battery (see procedure). Charge or replace battery as necessary before proceeding.
2. Place transmission in neutral.
3. Position an inductive ammeter clamp on battery positive cable.

18.18

STARTER CURRENT DRAW RESULTS (Good Battery Condition Verified)

Amperage Draw	Battery Voltage	Engine RPM	Possible Problem		
90 to 120 amps	9.6 Volts DC or Greater	Greater Than 400 rpm	Normal		
Less Than 90 amps	9.6 Volts DC or Greater	Less Than 400 rpm	Internal starter problems		
Greater Than 130 amps	Less Than 9.6 Volts DC	Less Than 400 rpm	$\begin{array}{c}\text { Inspect for voltage drops on } \\ \text { positive or negative side of starter } \\ \text { circuit. }\end{array}$		
Greater Than 130 amps	Less Than 9.6 Volts DC	Less Than 400 rpm	$\begin{array}{c}\text { Voltage drops within acceptable } \\ \text { limits. }\end{array}$		
Greater Than 130 amps	Less Than 9.6 Volts DC	Less Than 400 rpm	$\begin{array}{c}\text { Voltage drops within acceptable } \\ \text { limits. }\end{array}$		
Remove starter inspect.				$\}$	No internal starter problem.
:---:					
Engine compression is excessive					
or internal engine problems not					
allowing parts to rotate freely.					

STARTER MOTOR REMOVAL

! WARNING

Ensure that the ignition switch is turned off. Remove the negative cable at the battery before removing the starter motor.

1. Remove exhaust system. (Refer to Chapter 3)
2. Remove regulator/rectifier assembly.
3. Remove cable from starter terminal.

4. Place drain pan under starter.
5. Remove 2 starter motor mounting bolts and remove starter.

STARTER MOTOR INSTALLATION

WARNING
Make sure that the ignition switch is turned off and that the negative cable is disconnected from the battery before installing the starter.

1. Place starter into the engine case while aligning the starter mounting lugs as closely as possible during the installation process.
2. Rotate the starter to align starter mounting lugs with bolt holes in engine cases.
3. Install starter mounting bolts and tighten to specification.

30 Nm (22 lb-ft)

4. Connect starter motor cable and cable nut. Torque cable nut to specification.

6.8 Nm ($60 \mathrm{in}-\mathrm{lb}$)

5. Install regulator/rectifier assembly.

10 Nm ($85 \mathrm{in}-\mathrm{lb}$)
6. Install exhaust system. Refer to Chapter 3.
7. Connect negative battery cable.

STARTER CLUTCH REMOVAL

1. Refer to Chapter 9

ELECTRIC STARTER

NOTES

\qquad

CHAPTER 19 WIRING / LIGHTING SYSTEMS

HEADLAMP 19.2
HEADLAMP / TURN SIGNAL ASSEMBLY VIEW - CROSS ROADS 19.2
HEADLAMP / TURN SIGNAL ASSEMBLY VIEW - CROSS COUNTRY 19.3
HEADLAMP SYSTEM WIRING 19.4
TAIL LAMP / BRAKE LAMP SYSTEM WIRING DIAGRAM 19.5
TURN SIGNAL / HAZARD SYSTEM19.6
TURN SIGNAL SYSTEM WIRING DIAGRAM 19.6
TURN SIGNAL FLASHER MODULE - INPUT / OUTPUT 19.7
TURN SIGNAL SYSTEM OVERVIEW AND DIAGNOSTICS 19.8
SPEEDOMETER / TACHOMETER SIGNALS 19.9
SPEED SENSOR TEST 19.9
TACHOMETER SIGNAL TEST 19.10
SWITCH TESTING19.11
REAR BRAKE LIGHT SWITCH TEST 19.11
FRONT BRAKE LIGHT SWITCH TEST 19.11
CLUTCH SWITCH TESTING 19.12
GEAR POSITION SWITCH TESTING 19.12
GEAR POSITION SWITCH REMOVAL 19.13
TIPOVER SENSOR (ANGLE SENSOR) 19.14
HORN RELAY CIRCUITS19.15
SYSTEM DIAGRAM 19.15
INSTRUMENT CLUSTER CONNECTOR INPUT / OUTPUT (CROSS COUNTRY) 19.16
HEATERS
19.17
HEATED SEAT / HAND GRIP WIRING DIAGRAM
HEATED GRIPS 19.18
ELECTRICAL COMPONENT LOCATIONS
COMPONENT LOCATIONS 19.1919.19
GROUND LOCATIONS 19.20
CONNECTOR PIN INSPECTION 19.20
CRUISE CONTROL
OPERATION OVERVIEW - SETTING SPEED 19.2119.21
OPERATION OVERVIEW - RESUME / ACCELERATE 19.21
OPERATIONAL OVERVIEW - DECELERATE / CANCEL 19.21
CRUISE CONTROL DIAGNOSTICS 19.22
CRUISE MODULE INPUT / OUTPUT 19.23
REVERSE SYSTEM (ACCESSORY)
WIRING DIAGRAM / REVERSE HARNESS 19.2419.24
REVERSE SYSTEM DIAGNOSTICS 19.25
REVERSE SYSTEM DIAGNOSTICS (CONT.) 19.26
REVERSE SYSTEM SAFETY 19.27
OPERATING THE REVERSE SYSTEM. 19.27
REVERSE MODULE / FUSE ACCESS 19.27

HEADLAMP

HEADLAMP I TURN SIGNAL ASSEMBLY VIEW - CROSS ROADS

19.2

HEADLAMP / TURN SIGNAL ASSEMBLY VIEW - CROSS COUNTRY

WIRING / LIGHTING SYSTEMS

HEADLAMP SYSTEM WIRING

19.4

TAIL LAMP / BRAKE LAMP SYSTEM WIRING DIAGRAM

TURN SIGNAL / HAZARD SYSTEM

TURN SIGNAL SYSTEM WIRING DIAGRAM

TURN SIGNAL FLASHER MODULE - INPUT I

 OUTPUTThe flasher module is under the right side cover.
The Ignition key must be ON and the Engine Stop switch set to RUN for turn signal system function.

FLASHER MODULE PIN FUNCTION			
Pin	Function / Name	Wire Color	Overview of Operation
1	Turn Signal Indicator Light Output	DARK BLUE / VIOLET	Module sends power to the turn signal indicator lamp on this wire when a tum signal or hazard is selected (Cross Roads only).
2	Switched Power Input (+12 VDC)	DARK GREEN / PINK	+12 VDC From Turn Signal / Horn relay. This wire supplies battery voltage to the flasher module.
3	Left Turn Input	BLACK / DARK BLUE	This wire receives a left turn ground input from Pin 14 of ECM (auto cancel circuit). Ground signal must pass through Pin 15 of Chassis-to-Engine hamess connector. When ECM auto-cancels a turn signal (or if manually cancelled by the operator at the turn signal switch) this ground is taken away from the flasher module by the ECM.
4	Right Turn Input	BLACK / RED	This wire receives a right turn ground input from Pin 15 of ECM (auto-cancel circuit). Ground signal must pass through Pin 16 of the Chassis-to-Engine harness connector. When ECM auto cancels a turn signal (or if manually cancelled by the operator at the turn signal switch) this ground is taken away from the flasher module by the ECM.
5	Ground	BLACK / WHITE	Flasher module ground.
6	Hazard Switch Input	DARK BLUE / WHITE	This wire is grounded through the hazard switch when the switch is closed, and the module flashes all turn signals (module sends 12 V to Pin 7 and Pin 12 of the module for distribution to both left and right side turn signals)
7	Right Tum Signal Output	DARK BLUE / RED	Module sends power to right turn signals on this wire when it receives a RH turn signal input (ground) on module Pin 4 (BK/RD) (from ECM Pin 15)
8	Engine Diode Anode	RED / WHITE	"Negative" side of ECM Protection Diode. Prevents voltage spikes to ECM
9	Engine Diode Cathode	ORANGE	+12VDC side of ECM Protection Diode. Prevents voltage spikes to ECM
10	Neutral Light Diode Anode	BLUE /YELLOW	Grounded when clutch lever switch is closed so engine can be started in gear when lever is pulled in. Diode prevents Neutral light from illuminating when clutch lever is pulled in with transmission in gear
11	Neutral Light Diode Cathode	BROWN / PINK	Ground path through neutral light switch when transmission is in neutral
12	Left Turn Signal Output	DARK BLUE	Module sends power to left turn signals on this wire when it receives a LH turn signal input (ground) on module Pin 3 (BK/BU) (from ECM Pin 14)

19.7

TURN SIGNAL SYSTEM OVERVIEW AND DIAGNOSTICS

Refer to system wiring diagram on page 19.6. For all testing / troubleshooting, remember to turn the ignition key ON and the engine stop switch to RUN. LED signals are internally regulated and can be powered directly to test signal unit.

OVERVIEW OF OPERATION:
The Auto-Cancel function of the turn signal system is controlled by the ECM (located under the LH side cover). When the left or right turn signal switch is activated, the switch connects the BK/WH ground wire at the switch to either ECM Pin 20 (for a LEFT signal) or ECM Pin 30 (for a RIGHT signal). Note that this connection travels through either Pin 17 (for left turn) or Pin 18 (for right turn) of the Engine-to-Chassis Harness connector under the seat.
When the ECM receives a ground signal from the switch on Pin 20 or 30 , it then relays this ground signal to the Flasher Module Pin 3 (for left) or Pin 4 (for right) and maintains the ground connection until automatically or manually cancelled. When the flasher module receives a ground input from the ECM, it sends an intermittent (flashing) 12VDC to the appropriate turn signal.
When time / distance criteria for signal cancellation is achieved, the ECM takes away the ground from the Flasher Module, and the turn signal is canceled. The signal can also be manually cancelled by pushing the turn signal button straight inward. This connects both turn signal switch wires to ground at the same time, and the ECM sees this as a "manual cancel" input.
Note that because the Hazard system requires no cancel function, the ECM is not part of the Hazard circuit. A HAZARD input (a ground) goes directly from the Hazard Switch to Pin 6 of the Flasher Module. The module sees the ground on Pin 6 and sends flashing 12VDC to BOTH left and right turn signals. The hazard function overrides a turn signal input.
GENERAL TROUBLESHOOTING: Turn signal diagnostics can be accomplished by manually connecting the appropriate wires to ground at various points in the system (most easily performed at the Engine-to-Chassis harness connector) and by verifying wire and switch continuity with an Ohmmeter. As with any electrical malfunction, ALWAYS verify FIRST that all wire connections are clean and tight. Look at the wires where they enter connectors or at the fuse box. Pull lightly on wires to be sure they are secured in the connector and not loose. TIP: If turn signal(s) function when Hazard switch is ON, turn signal wire connections, signal lamp, and related wiring from Flasher Module are all in working order. Check ground inputs from switch to ECM and ground outputs from ECM to Flasher Module as described below.
CONNECTOR AND COMPONENT LOCATION: The turn signal switch connector is located inside the headlamp housing (Cross Roads) or inside the fairing (Cross Country). The Flasher Module is located under the right side cover.

TURN SIGNAL SWITCH BYPASS TEST:

1. Locate Engine-to-Chassis harness connector under the left side cover and leave it connected.
2. On engine harness side of connector, jump VT/DB wire (Pin 17) to test left turn, or VT/RD (Pin 18) for right turn to ground at battery negative (-) post.

NOTE: If piercing probes are used, use care not to damage the wire. Seal probe marks on wire insulation when test is completed.
3. Turn ignition key ON and Stop switch to RUN. If turn signal works, inspect turn signal switch continuity and the path between switch and engine harness connector (to test Engine-to-Chassis harness connection perform Step 2 on the chassis side of connector).
4. The same basic test outlined above for the ground inputs from the switch can be performed on the ground output wires that supply the ground from the ECM to the to the flasher module (BK/BU Pin 15 and BK/R Pin 16). If turn signal function is restored when the output wire is grounded, the Flasher Module (and connection to the Flasher) is in working order. If signal does not flash with out put wire grounded, inspect Flasher Module connection and continuity of BK/DB or BK/RD wire to ECM.

TURN SIGNAL SWITCH CONTINUITY TEST:

1. Remove headlamp housing cover (or headlamp on Cross Country models). Locate LH switch 14 Pin connector.
2. Separate connector. Connect ohmmeter to Pin 4 and $\operatorname{Pin} 5$ (RH turn) or Pin 4 and $\operatorname{Pin} 6$ (LH turn) on switch side of connector. Hold switch to left or right and verify good continuity in each position.

19.8

SPEEDOMETER / TACHOMETER SIGNALS

SPEED SENSOR TEST

The speed sensor signal can be tested at various points on the vehicle depending on accessibility and preference, or if equipped with Cruise Control, follow the self-diagnostic procedure on page 19.22.

Test points include:

- The cruise control harness connector (under the seat in the front frame opening).
- The speedometer connector (inside the headlamp or fairing).
- The ECM connector (under the left side cover).

NOTE: The signal from the speed sensor is supplied to the ECM on Pin 42, and distributed or used by the ECM to operate the speedometer, the cruise control module (whether equipped with cruise or not, the connector is there), and the auto cancel feature of the turn signal system. If any one of these components is functioning properly (for example, the speedometer works, the turn signals cancel normally, or the cruise control will accept a set speed) then the speed sensor itself is functional and supplying a signal to the ECM. Diagnostics should be focused on the non functional circuit, not on the speed sensor itself.
5. Connect red meter lead to the DG/DB wire in pin 11.

1. Remove the headlamp (Cross Country) or headlamp housing cover (Cross Roads).
2. Disconnect speedometer connector (A) and locate the Dark Green/Dark Blue wire on Pin 11. (Cross Country shown below, Cross Roads similar).

3. Connect the black meter lead to engine or battery ground.
4. Turn ignition key ON and rotate rear wheel slowly while observing the bar graph below the digital display on the meter. Note: The bar graph updates much faster than the number display and will make it easier to see a voltage swing.
5. Voltage should toggle between approximately .06 volts and battery voltage if a speed signal is present.
NOTE: Look for a voltage swing - not a specific voltage.
6. If no speed signal is present, inspect all connections and the related wires in the connectors.
7. Test speed sensor using Speedometer Signal Tester PV-43544 and adaptor harness PV-47303.
8. Safely elevate the rear wheel so it can be rotated for the test.
9. Set digital multimeter to measure DC voltage.

WIRING / LIGHTING SYSTEMS

TACHOMETER SIGNAL TEST

On Cross Roads models equipped with a tachometer, this test will determine if a signal is present at the tachometer 4Pin connector inside the headlamp housing. On Cross Country models, the tachometer signal is delivered on the CAN bus and the 4-Pin connector is capped with a protective cover, however, the signal can be tested in the same manner as for Cross Roads models.

This test can also be performed at the reverse harness connector (behind the left saddlebag) if the vehicle is equipped with reverse. See page 19.27. NOTE: On vehicles equipped with Cruise Control, follow the cruise control selfdiagnostic procedure on page 19.22.

1. Remove headlamp housing cover,
2. Disconnect tachometer harness 4-Pin connector (Dark Green/White, Black/White, Brown/Pink, and Orange wires).
3. Connect red (+) lead of meter to Pin 4 (GN/WH) and black (-) meter lead to Pin 3 (BK/WH) on the chassis hamess side of the tachometer connector.
4. Set meter to measure DC Volts or Hz (preferred) if your meter has frequency measurement capability.
5. Start engine and let it idle. Compare meter reading to specification.
6. If signal is out of specified range, verify wire continuity from ECM Pin 22 through harness and ground path on BK/WH.

Specification:

2-12 VDC
or
Approximately 16.6 Hz @ 1000 RPM.

PIN	TACHOMETER FUNCTION
4	ESGINE RPN OUTPUT
3	GROUND (DIGITAL)
2	IGNITION SN ACC OUTPUT
1	IGNITION BREAKER OUTPUT

TACHOMETER

SWITCH TESTING

REAR BRAKE LIGHT SWITCH TEST

NOTE: The rear brake switch can also be tested by following the cruise control self-diagnostic procedure on page 19.22 (if equipped with cruise).

1. Remove left highway bar and left outer chin fairing.
2. Disconnect rear brake light switch wires (B).
3. Connect ohmmeter to switch contacts.
4. Apply light pressure to rear brake.
5. The switch should become conductive (resistance less than 2 Ohms) as soon as brake pedal resistance is felt.

SPECIFICATION: Continuity When Brake Applied

FRONT BRAKE LIGHT SWITCH TEST

1. Disconnect wires (A) from switch.
2. Connect ohmmeter to switch contacts and test for good continuity through switch when front brake is applied.

SPECIFICATION: Continuity When Brake Applied

NOTE: The front brake switch can also be tested by following the cruise control self-diagnostic procedure on page 19.22 (if equipped with cruise).

Front brake micro switch located on front brake lever perch

CLUTCH SWITCH TESTING

1. Refer to page 18.9 to test the clutch switch and circuit.

GEAR POSITION SWITCH TESTING

1. Refer to bench testing (page 19.13) if switch is removed.
2. Remove side covers (page 3.27).
3. Disconnect gear position switch 2 pin connector.

TABLE 1-TESTING NEUTRAL SIDE OF GEAR POSITION SWITCH (Switch Installed)			
Gear Meter lead connections (switch side of unplugged connector) Ohmmeter Reading*			
	RED LEAD (+)	BLACK LEAD (-)	$+/-20 \%$
	Crankcase (Ground)	$\leq 1.0 \Omega$	
Any gear (except Neutral)	Brown	$\infty(\mathrm{OL})$	
* Subtract meter lead resistance from result			

Gear	Meter lead conne (switch side of un	ector)	Resistance:
	RED LEAD (+)	BLACK LEAD (-)	+/-10\%
1ST	Black / Yellow	Crankcase Ground	470Ω
Neutral			DIODE CHECK function. Continuity one way and no continuity with leads reversed.
2ND			$1750 \Omega(1.75 \mathrm{~K} \Omega)$
3RD			$2860 \Omega(2.86 \mathrm{~K} \Omega)$
4TH			$4710 \Omega(4.71 \mathrm{~K} \Omega)$
5 TH			$7242 \Omega(7.24 \mathrm{~K} \Omega)$
6TH			$13.950 \Omega(13.95 \mathrm{~K} \Omega)$

GEAR POSITION SWITCH REMOVAL

Removal / Bench Test

1. Remove mufflers and loosen head pipes (Chapter 3).
2. Move head pipes outward until drive sprocket cover can be removed. Complete head pipe removal is not required.
3. Remove switch screws and wire harness clamps.
4. Remove switch.
5. Test each switch contact to the BKME wire in the connector as shown below and compare to resistance table on page 19.12.
6. Test the ring terminal (BK wire) to center contact of switch. Ground path is through center switch contact, through BK wire and ring terminal to crankcase ground. Be sure the path has good continuity (less that 1 Ohm).
7. Inspect the springs and plungers. Replace springs if damaged or distorted. Spring replacement is recommended when switch is removed.

Installation

1. Replace sealing O -ring on switch body and lubricate with a light film of grease.
2. Clean sealing surface on crankcase.
3. Clean surfaces of shift drum and install springs and plungers.
4. Install switch.
5. Torque mounting screws to $4.9 \mathrm{Nm}(43 \mathrm{lb}-\mathrm{in})$.
6. Install wire harness clamps to crankcase. Torque mounting screws to 87 lb -in.

WIRING / LIGHTING SYSTEMS

TIPOVER SENSOR (ANGLE SENSOR)

OVERVIEW OF OPERATION

The Tipover Sensor (TOS) is used to disable the fuel pump, fuel injector, and ignition circuits in the event of a crash or tipover condition.

The ECM sends a 5VDC reference to the sensor and monitors the output voltage. From the output signal, the ECM can tell whether the TOS system is in normal operation, if the vehicle is tipped over, or if there is an open or short in the system wiring. Only a tipover voltage from the sensor will cause the ECM to disable the fuel pump and ignition circuits. If the TOS system wiring is disconnected (open / high) the ECM will set a fault code (and subsequent CHK ENG light) but will not disable the engine's operational circuits. The same is true for a TOS system short to ground (low).

Only in the event of an actual tipover condition is the voltage output within a range that will cause the ECM to disconnect the fuel and ignition circuits as well as the internal drivers that control them.

TIPOVER SENSOR RESET

After a Tipover Condition Has Occurred:

1. Return the motorcycle to the upright position and place it on the side stand.
2. Be sure the Engine Stop (kill) switch is in the RUN position.
3. Turn the ignition key OFF and wait 15 seconds.
4. Turn the ignition key ON. The fuel pump should cycle and the system should return to normal operation.

SENSOR LOCATION

The tipover sensor is mounted on the rear inner fender debris flap behind the rear shock absorber. The sensor and wire connector can be accessed by removing the right side cover

DIAGNOSTICS

1. If the tipover sensor was activated (vehicle was actually tipped over) reset the system as outlined above. If the system fault is still present, continue.
2. Remove the right side cover.
3. Visually inspect the sensor. Be sure it is securely mounted to the debris flap and the debris flap is secure in the chassis. The word "UP" must be visible on the top of the sensor and the
 sensor should be level relative to the motorcycle.
4. Disconnect the sensor from the main wire harness and look at connector pins for signs of corrosion or misalignment that would cause a poor connection.
5. Connect Digital Wrench for further diagnosis of the tipover sensor circuit.

HORN RELAY CIRCUITS

SYSTEM DIAGRAM

INSTRUMENT CLUSTER CONNECTOR INPUT I OUTPUT (CROSS COUNTRY)

19.16

HEATERS

HEATED SEAT / HAND GRIP WIRING DIAGRAM

HEATED GRIPS

ELECTRICAL COMPONENT LOCATIONS

 COMPONENT LOCATIONS

- ECM (1) LEFT SIDE COVER
- Engine-to-Chassis Harness Connector (2)
- Diagnostic Connector (3)
- Reverse (Accy) Connector (4)
- Vehicle Speed Sensor (VSS) (5)
- Gear Position Switch Connector (6)

RIGHT SIDE COVER

- Fuse Box (7)
- EVAP Purge Connector (8)
- Flasher Module (9)
- Fuse - Accy (Powerlet GY/RD) (10)

CROSS COUNTRY GENERAL HARNESS AND CONNECTOR ROUTING / LOCATION

- Radio Fuse (11)
- Radio Antenna (12)
- NAV Connector (13) (if equipped)
- Fairing Harness Connector (14)
- Cruise Switch Connector (15)
- Handlebar Switch Connectors (16)
- LCD Display Connector (17)

GROUND LOCATIONS

Symptoms of a loose, corroded, or broken ground wire vary depending on the wire and the location. Most often, a problem with a main ground wire location will affect multiple circuits. Inspect the grounds to be sure they are clean and tight.

Engine ground (A).
Left rear corner of crankcase.

CONNECTOR PIN INSPECTION

Thorough inspection of an electrical connection should include a visual inspection of pin and socket condition, cleanliness, alignment AND SECURITY. The photo below is an example of a wire at the fuse box that is pushed past the lock tab (the lock is in place). Always pull lightly on connector wires in a suspect circuit to be sure they are secured in the connector, and do not move when the mating halves are re-connected or when fuses, relays, or breakers are re-installed in their respective sockets.

Chassis harness grounds are located under the right side cover, behind the inner panel.

The ECM ground is located on the frame behind the ECM.

CRUISE CONTROL

OPERATION OVERVIEW - SETTING SPEED

Review Cruise Control Safety \& Operation in the Rider's Manual before operating the Cruise Control. NOTE THAT YOU MUST
WAIT AT LEAST 3 SECONDS AFTER TURNING THE CRUISE SWITCH ON BEFORE IT WILL ENGAGE!
To set the cruise control (if equipped):

1. Press the ON button to activate Cruise Control. Note the cruise indicator on the instrument cluster will illuminate every time the ON/OFF button is pressed.
2. Accelerate to desired speed and press SET button (wait at least 3 seconds after the cruise ON button was pressed). This speed will be logged in memory.
3. The CRUISE indicator lamp on the instrument cluster will illuminate.

- Cruise control can be set in any gear.
- The cruise control can be activated at speeds above 25 mph (40 kph).
- Set speed will vary slightly in hilly terrain.
- The cruise control will not resume a pre-set speed if the resulting accel / decel rate is too high or too low. Example: If you are in 6th gear and try to resume a set speed from 40 mph , the cruise may disengage.
- Brake lights must be working properly.

4. Push the OFF button to turn the cruise control system off and erase the memory set speed.

OPERATION OVERVIEW

RESUME

Pressing the Resume button (RES) will reset the cruise to the memorized speed after braking or disengaging the cruise control with either brake, throttle, or clutch.

NOTE: If the RES button is pressed within 3 seconds of disengaging, the cruise control may not engage, EVEN IF THE CRUISE CONTROL INDICATOR ILLUMINATES. This is a safety feature that prevents cruise control from engaging if a button is stuck. To continue using cruise control, disengage it. Wait at least 3 seconds, then press the RES button.
NOTE: Turning the cruise control master switch off will erase the set speed from memory and disengage the cruise control.

ACCELERATE

Tap and release the ACC button to increase speeds in approximately $1 \mathrm{mph}(1-2 \mathrm{~km} / \mathrm{h})$ increments. Press and hold ACC button to accelerate to a new SET speed (resets when button is released).
NOTE: If you use throttle to accelerate and then release it, cruise will resume original SET speed.

DECELERATE

Tap and release Decelerate (DEC) button to decrease speeds in approximately $1 \mathrm{mph}(1-2 \mathrm{~km} / \mathrm{h})$ increments. Press and hold DEC button to decelerate to a new SET speed (resets when button is released), or to the minimum of $25 \mathrm{mph}(40 \mathrm{~km} / \mathrm{h})$.

TO CANCEL THE CRUISE CONTROL

To temporarily cancel cruise control and allow use of the resume feature:

- Apply brakes, close the throttle, or pull the clutch lever in

To cancel the cruise control and erase the set speed from memory, press OFF.

CRUISE CONTROL DIAGNOSTICS

The sensors and switches that supply information to the cruise control module can be tested to verify proper operation using the self-diagnostic function built in to the cruise control system.

NOTE: The ENGINE STOP SWITCH must be in the RUN position during the entire procedure. The LED indicator light on the ON/OFF switch must be illuminated when the key, stop switch, and cruise are ON. (Check power supply on Pin 1 (DG/PK wire) at the cruise switch connector in the fairing if the LED is not lit.

To enter the diagnostic mode:

1. Turn the cruise control OFF.
2. Turn the ignition switch OFF.
3. Turn the ignition key ON, but do not start the engine.
4. Press and HOLD the RESUME / ACC button while you press the cruise control ON/OFF button. The cruise control indicator should illuminate on the instrument cluster.
5. Release both buttons. The cruise control indicator should go OFF. If it does NOT go off when the buttons are released, refer to the Troubleshooting Chart at the end of this procedure.

The system is now in self-diagnostic mode.

Switch Button Test

6. Press and release the SET/DEC button. The cruise indicator lamp should illuminate every time the button is pushed and go out when released.
7. Press and release the RES/ACC button. The cruise indicator lamp should illuminate every time a button is pushed and go out when released.

Brake Light Switch Test

8. Pull the front brake lever or push the rear brake pedal. The cruise indicator lamp should illuminate every time a brake is applied and go out when released.

Throttle Safety Switch Test

9. Close the throttle firmly with the twist grip. The cruise indicator lamp should illuminate every time the throttle is closed and go out when the throttle grip is released.

Vehicle Speed Sensor (VSS) Test

10. Roll the motorcycle forward or backward for at least 2 meters while observing the cruise indicator lamp. If the speed signal is present, the cruise indicator lamp should flash and continue to flash at the same rate.

Tachometer Signal Test

11. Turn the cruise control OFF (press the OFF button).
12. Turn the ignition switch OFF.
13. Be sure the transmission is in NEUTRAL.
14. Turn the ignition key to the ON position and start the engine. Hold the RES/ACC button down while you press the cruise control ON button.
15. Release both buttons. If a tachometer signal is present, the cruise indicator lamp should flash at a rate based on engine RPM. Rev the engine. The rate of flash should increase with RPM.
16. Turn the ignition key to the OFF position. All tests are complete.

Cruise Control Self-Diagnostic Troubleshooting

SYMPTOM	POSSIBLE PROBLEM	REMEDY / DIAGNOSTIC TEST
		Enter diagnostic mode. Disconnect each switch, one at a time, while watching the cruise indicator. If the cruise light goes out when a switch is disconnected, inspect the switch and related circuit wiring. If the throttle switch is suspect, adjust throttle cable free play as described in Chapter 2 and test the switch. Disconnect the switch and connect an Ohmmeter to the switch contacts (on the throttle close cable). The throttle switch should have continuity only when the throttle is closed firmly, and no continuity when throttle is released (Pin 4 of module should not be powered when throttle is released).
Cruise indicator lights but does go off when buttons are noteased in Step 5.	Front brake switch, rear brake switch, or throttle switch is closed.	

19.22

CRUISE MODULE INPUT / OUTPUT

The self-diagnostic test on page 19.22 will test the following signal inputs to the module:

- SET/DEC Button on the handlebar switch.
- RES/ACC button on the handlebar switch.
- Front and rear brake light switch.
- Vehicle Speed Sensor (VSS).
- Tachometer Signal.

If the red LED on the handlebar switch is on when powered, but the self diagnostics will not function, disconnect the harness from the module (located in the frame opening under the seat) and verify that battery voltage is reaching the module on Pin A (White / Dark Blue wire).

NOTE: The red LED only indicates that power is reaching the handlebar control and does not indicate that power is reaching the module. If the self diagnostic function performs normally (page 19.22) power is reaching the module and the inputs listed above are present and functional.

Disconnect harness from module. Test Input / Outputs with a 12 V test light or a multimeter and compare to table. Verify Pin E (Black wire) has a good ground to the rear frame. The ground connection is located under the right inner panel under the right side cover.

Cruise Module Wire Harness Connector

PIN	WIRE COLOR	CRUISE CONTROL FUNCTION
A	WH / DB	ON / OFF (+12 Vdc)
B	WH / OG	SET / DECEL INPUT (+12 Vdc)
C	WH / VT	RESUME / ACCEL INPUT (+12 Vdc)
D	WH / RD	THROTTLE SAFETY SW IN (+12 Vdc)
E	BK	GROUND
F	DB / PK	SWITCHED POWER (+12 Vdc)
G	WH / PK	STOP LAMP INPUT (+12 Vdc)
H	DG / WH	ENGINE RPM INPUT (TACH SIGNAL FROM PIN 22 of ECM)
J	WH / BN	IDICATOR LAMP OUTPUT
K	DG / DB	VEHICLE SPEED INPUT (FROM PIN 21 ECM)

WIRE COLOR LEGEND	
BG	BEIGE (TAN)
BK	BLACK
BU	LIGHT BLUE
DB	DARK BLUE
BN	BROWN
GY	GRAY
GN	LIGHT GREEN
DG	DARK GREEN
OG	ORANGE
PK	PINK
RD	RED
VT	VIOLET (PURPLE)
WH	WHITE
YE	YELLOW
TWO WIRE WITH MAIN/TRACE COLO ARE SHOWN EXAMPLE: RD/YE $=$ RED WITH YELLOW TRACE.	

\qquad

REVERSE SYSTEM (ACCESSORY)

WIRING DIAGRAM / REVERSE HARNESS

REVERSE SYSTEM DIAGNOSTICS

OVERVIEW OF OPERATION

In a Reverse system, the electric starter button serves a dual purpose. When the starter button is pressed, battery voltage is sent through the Reverse wiring harness to the Reverse Module. The module then decides whether to send power to the electric starter solenoid (for engine starting) or to the Reverse Drive Motor (for reverse operation). This decision is based on information the module receives from the reverse switch and a few other inputs such as the neutral switch and tachometer signal.

MECHANICAL SYSTEM BASIC FUNCTION

When the Reverse Lever is lifted UP (Reverse) a cam-actuated linkage rod pulls the Reverse Idler Gear inward, directly coupling the Pinion Gear to the Reverse Driven gear (mounted to the belt drive sprocket). The Reverse Switch is now OPEN, which takes the ground away from Pin C of the module, and the module will supply power to the Reverse motor when the starter button is pressed.

REVERSE MODULE INPUT TESTING

To test the various inputs to the reverse module, disconnect the harness from the module (page 19.27) and test with a 12 V test light or multimeter. Tests are outlined in the table below.
NOTE: The engine must be running to test the tachometer signal to the module on Pin A. If the tachometer works, perform tests on the other inputs first, then if necessary, test the tach input on Pin A.

REVERSE MODULE INPUT / OUTPUT			
$\begin{array}{\|c\|} \hline \text { Pin } \\ \text { Number } \\ \hline \end{array}$	Function / Name	Wire Color	Pin Function / Test Connections / Normal Result (All input tests performed on connector pins; hamess disconnected from module)
A	Tachometer Input	DG	SIGNAL: 9 Hz square wave. FUNCTION: tells module engine is running. IEST: Set meter to Hz ACC or Vdc. Start engine first, then disconnect harness connector from module. Connect red (+) meter lead to PIN A. Connect black (-) meter lead to engine ground or Pin F (if ground at Pin F has been tested). RESULT Approximately 9 Hz or a pulsating DC indicated on the bar graph of the meter, indicating that a signal is present (voltage reading will vary).
B	Start Switch Input	DB/YE	SIGNAL: +12 Vdc. FUNCTION: Battery voltage into module when starter button is pressed. IEST: Set meter to Vdc. Connect red (+) meter lead to PIN B. Connect black (-) meter lead to engine ground (or Pin F). Turn ignition switch ON and stop switch to RUN. RESULT: Battery voltage present when starter button is pressed
C	Reverse Switch Input	WH	SIGNAL: Open to ground. FUNCTION: Tells module Reverse has been selected (Pin C has no ground). IEST. Set meter to Ω (Ohms). Connect one meter lead to PIN C. Connect other meter lead to engine ground (or Pin F). Move reverse lever to Reverse. RESULT OPEN (OL) with lever in Reverse (UP). Good continuity to ground ($(\Omega \Omega$) with lever in Forward (down).
D	Not Used	-	Pin D not used
E	Switched Power	PK	SIGNAL: +12 Vdc. FUNCTION: Battery voltage into module. IEST: Set meter to Vdc. Connect red (+) meter lead to PIN E. Connect black () meter lead to engine ground (or Pin F). Turn ignition switch ON and stop switch to RUN. RESULT Battery voltage present when key is turned ON.
F	Ground	BK	Module ground. TEST: Set meter to Ω (Ohms). Connect one meter lead to PIN F. Connect other meter lead to engine ground. RESULT Continuity to ground ($\leq 1 \Omega$).
G	Battery Voltage	RD	SIGNAL: +12 Vdc. FUNCTION: Power supply from load side of 40 A circuit breaker. Module switches power to Pin J in Reverse. IEST +12 Vdc constant
H	Starter Output	YE	Power out of module to engine starter solenoid when starter button is pressed (and reverse lever is not in Reverse).
J	Reverse Output	GY/RD	Power out of module to reverse drive motor when starter button is pressed (and reverse lever is in Reverse).
K	Not Used	-	Pin K not used

REVERSE SYSTEM DIAGNOSTICS (Cont.)

REVERSE SYSTEM TROUBLESHOOTING		
Problem	Possible Cause / Remedy	Reference
Reverse system inoperative. " R " not indicated on display.	Reverse switch contacts closed. Check reverse switch function and linkage adjustment.	See below for switch contact test. Adjust linkage rod.
	25A fuse open (blown). Replace fuse and determine cause.	See page 19.27
	Poor wiring connection. Verify all wiring is connected and clean.	
Engine starter inoperative* -NOTE: If the 25A fuse is blown, the engine starter motor will not operate even if the reverse lever is in the forward (down) position.	Reverse lever in "Reverse" position (UP). Move lever to forward (DOWN) position.	
	25A fuse open (blown). Replace fuse. Determine cause of failure.	See page 19.27
	Poor wiring connection. Verify all wiring is connected and clean.	
" R " Displayed too early or too late in reverse lever travel range	Reverse linkage adjustment incorrect.	See below for switch contact test. Adjust linkage rod.
	Reverse switch malfunction or switch mounting bracket bent.	
Engine kills when transmission shifted into gear.	Reverse switch contacts open (no ground on Pin C at module). Reverse lever in Reverse position or linkage adjustment incorrect.	Move lever back to the Forward position (down) or adjust shift linkage.
Difficulty moving lever into or out of Reverse position	Reverse gear idler shaft dirty. Lubricate shaft at every oil change.	Lubricate idler shaft.

REVERSE SYSTEM SAFETY

NOTE: Do not attempt to engage or disengage the reverse system when the motorcycle is moving.
\(\left.$$
\begin{array}{|l|l|}\hline \text { BEFORE operating in reverse } & \text { NEVER operate in reverse } \\
\hline \hline \begin{array}{l}\text { Always sit on the motorcycle with legs astride and both } \\
\text { feet on the ground. }\end{array} & \begin{array}{l}\text { When not properly seated. } \\
\text { Always check for obstacles or people behind the } \\
\text { motorcycle. }\end{array} \\
\begin{array}{l}\text { When in an area where obstacles or bystanders are } \\
\text { present. }\end{array} \\
\text { Always retract the sidestand fully. } & \begin{array}{l}\text { With a passenger on board. A passenger can obstruct } \\
\text { your view and maneuverability. }\end{array}
$$

An loose or slippery surfaces. Loss of foot traction could

cause a tip-over.\end{array}\right\}\)| While the motorcycle is moving forward. |
| :--- |
| When on a grade or uneven surfaces. |

OPERATING THE REVERSE SYSTEM

1. Check the area behind and around the motorcycle for obstacles or people. Be aware that the front wheel may travel outward and require a larger operating area.
2. Make sure the motorcycle is stationary.
3. Dismount any passenger.
4. Straddle the motorcycle and bring it to the fully upright position. Sit in a normal riding position with legs astride and both feet on the ground.
5. Retract the sidestand.
6. Place the transmission in neutral. Start the engine and allow it to idle.
7. Lift the reverse lever and verify that the reverse indicator (R) displays in the Information Display.
8. Recheck the area behind and around the motorcycle to ensure a clear operating area.
9. While balancing the motorcycle with your legs and feet, press and hold the START button to begin moving in reverse. Release the button to stop moving.
10. When completely stopped, move the reverse lever down to the disengaged position. Verify that the neutral indicator (N) displays before stopping the engine.

NOTE: The engine will stop if you shift into forward gear before disengaging the reverse lever.

REVERSE MODULE I FUSE ACCESS

1. Remove left saddlebag.
2. The reverse module and the reverse system fuse are located on the rear fender debris flap.
3. Lift tab and separate connector from module.

NOTE: The starter system will not function with the reverse module disconnected, or if the 25A fuse is open (blown). On models equipped with Reverse, the tachometer signal test (page 19.10) can be performed at this connector, but the engine must be started BEFORE disconnecting the harness from the reverse module.

NOTES

19.28

A

Accelerate, Cruise Control 19.17
Adjustment
Foot Control 1.27
Front Brake Lever . 1.27
Headlamp Aim 2.23
Rear Suspension Air Pressure 2.27
Throttle Cable Free Play . 2.9
Windshield . 1.25
Adjustment, Drive Belt . 2.21
Aim, Headlamp, Inspection . 2.23
Air Filter . 2.6
Air Pressure, Rear Suspension 2.27
Air Temperature Display 1.21
Air Temperature Sensor Diagnostics 5.34
Alignment, Rear Wheel 2.21
Amperage Output Test . 16.9
Angle Sensor . 19.27
Anti-Static Wrist Strap . 5.5
Assembly
Crankcase . 10.21
Cylinder Head . 7.24
Front Fork . 12.25
Assembly View
Cam Drive \& Valve Cover 7.4
Camshaft Carrier . 7.5, 7.6
Clutch Shaft . 10.9
Countershaft . 10.10
Crankcase Components . 10.4
Cylinder Head . 7.7
Flywheel 9.21
Front Axle \& Triple Clamp 12.6
Front Fender Attachment . 12.4
Front Fork 12.7, 12.8
Handlebar 12.11
Headlamp . 19.3
Mainshaft . 10.9
Primary Cover 9.6
Primary Drive 9.21
Rear Wheel \& Axle . 13.4
Rear Wheel, Billet . 13.7
Rear Wheel, Cast . 13.6
Rocker Arm . 7.5, 7.6
Shift Drum 10.11
Shift Fork . 10.11
Shift Linkage . 9.5
Shift Mechanism 9.7
Split Gear . 9.21
Swingarm \& Suspension Linkage 13.5
Torque Compensator . 9.21
Transmission . 10.8
Assembly View, Clutch 9.14
Assembly View, Flywheel (Rotor) 9.21
Assembly, Clutch 9.19
Assembly, Oil Pump . 4.13
Audio Buttons . 1.26
Audio Features
AM Radio . 1.33
Automatic Volume Control (AVC) 1.35
AUX 1.33
Bass Setting . 1.35
CB Headset Entertainment Mode I. 36
CB Local (LO) / Distant (DX) 1.36
CB Volume 1.36
Fader Setting 1.35
FM Radio 1.33
Intercom (ICOM) Volume 1.36
iPod 1.33
Long Wave (LW) 1.33
Medium Wave (MW) 1.33
Memory Presets 1.34
Mute 1.32
Passenger Volume 1.32
Seek / Scan 1.36
Source Selection 1.33
Speakers, External 1.35
System Power 1.31
Treble Setting 1.35
Tuning, Audio 1.34
Volume Control 1.32
Volume Features 1.32
Weather Band 1.33
Weather Band (NOAA) 1.37
Weather Band Channels 1.37
XM Radio 1.33
XM Radio Display 1.36
Audio Systems
Frequencies (Overview) 1.30
Left Hand Controls (Lower) 1.31
Left Hand Controls (Upper) 1.31
Main User Interface 30
LCD Screen 1.30
Memory Presets 1.30
Power 30
Source (SRC) Mode 1.30
Volume Menu 1.30
Overview of Operation 1.30
Passenger Controls 1.31
Authorization Key 5.45
Authorization, Reflash 5.43
Auto Cancel System
Diagnostic Blink Codes 19.10
Self Diagnostics 19.8, 19.9
Auto Cancel Turn Signal Circuit 19.7. 19.11
AUX
Getting Started 1.42
Input Cable 1.43
iPod Input Cable 1.43
iPod Play Lists 1.43
iPod Tuning 1.43
Axle, Front, Inspection 12.14
B
Backfire
Troubleshooting 5.47
Balance Shaft
Installation 10.24
Removal \& Inspection 10.24
Balancing. Tire 14.11
Base Gasket Sealing 8.2

B (Cont.)

Battery
Current Drain Test 16.8
Installation 2.17
Load Test $16.8,18.7$
Removal 2.17, 16.5
Troubleshooting 16.7
Battery Inspection 16.6, 18.7
Battery Safety 16.2
Battery Service, Charging 16.5
Battery Voltage At ECM Test 5.38
Battery, Charging 2.16
Battery, Maintenance 2.16
Battery, Storage 2.16
Bearing Installation, Steering Stem 12.35
Bearing Lock Nut Adjustment, Steering 12.33
Bearing Race Installation, Steering 12.36
Bearing Race Removal, Steering 12.36
Bearing Removal, Steering Stem 12.34
Bearing Selection, Connecting Rod 10.18
Bearing, Wheel, Inspection 2.28
Bearings, Steering Head, Inspection 2.28
Belt Guard Fastener Torque 11.4
Belt Inspection 11.5
Belt Installation 11.5
Belt Removal 11.5
Belt Tension 2.20
Belt Tension / Deflection Table 2.21
Belt Tension Adjustment 2.21
Belt, Drive, Condition 2.19
Belt, Drive, Wear 2.19
Brake Caliper, Front
Installation 15.27
Removal 15.23
Brake Caliper, Rear
Installation 15.31
Removal 15.29
Brake Disc Inspection 15.20
Brake Disc, Front
Installation 12.15
Removal 12.15
Brake Disc, Rear
Installation 13.14
Removal 13.14
Brake Fluid
Filling \& Bleeding 15.14
Replacement 15.13
Warnings \& Precautions 15.13
Brake Fluid Flush 15.14
Brake Lever, Front 2.10
Brake Light Switch Testing 19.14
Brake Pad Replacement
Front 15.17
Rear 15.18
Brake Pad. Front 2.13
Brake Pedal, Rear 2.11
Brake System
Safety 15.2
Torque 15.3
Torque Specifications 15.3
Troubleshooting 15.32
Brake, Rear, Pad Inspection 2.13
Brakes, Front
Fluid Level 2.12
Lever Reach 1.27
Brakes, Rear
Fluid Level 2.12
Break In Procedure 1.13
Breather Inspection, Crankcase Ventilation 2.14
Bushing, Swingarm 13.22
Buttons, Audio \& Cruise 1.26
C
Caliper, Front
Installation 15.27
Removal 15.23
Caliper, Front Brake 15.10
Caliper, Rear
Installation 15.31
Removal 15.29
Caliper, Rear Brake 15.11
Cam Chain Sprocket 7.11
Cam Chain Tensioner Inspection 7.10
Removal 7.9
Cam Chain Tensioner Installation 7.10
Camshaft
Inspection 7.13, 7.15
Installation 7.26
Camshaft Carrier
Assembly View 7.5, 7.6
Torque 7.5, 7.6
Camshaft Carrier Removal 7.14
Camshaft Chain Guide Installation 7.30
Camshaft Drive \& Valve Cover, Assembly View 7.4
Camshaft Drive Cover 7.9
Camshaft Timing
Front Cylinder 7.31
Quick Reference 7.8
Rear Cylinder 7.30
Capacity, Engine Oil 2.7
CB Radio
Channel Adjustment 1.38
Channels \& Frequencies 1.40
Local (LO) / Distant (DX) Setting 1.40
Push-to-Talk (PTT) 1.38
Squelch 1.39
Volume (Driver) 1.39
Volume (Passenger) 1.39
CB Radio / ICOM System Getting Started 1.37
CB System
Headset Receptacles 1.42
Celsius to Fahrenheit Chart 1.48
Chain Guide, Camshaft 7.30

C

Charging System
Fastener Torque 16.4
Output Test 16.9
Specifications 16.4
Charging, Battery 2.16
Chassis to Engine Hamess Connector 5.29
Check Engine Indicator 1.23
Check Sum Error, Memory 5.37
Circuit Breakers, location and replacement 19.2
Circuit Test, Ignition 17.8
Circuits, EFI Wiring 5.30
Cleaning 2.30
Crankshaft 10.20
Clutch
Basket 9.17
Hub 9.17
Pinion Shaft, Removal, Installation 9.8.9.9
Pressure Plate 9.18
Release Rack \& Bearing 9.18
Spring 9.18
Spring Compressor 9.16
Clutch Assembly 9.19
Clutch Assembly View 9.14
Clutch Disassembly 9.15
Clutch Fluid Flush 15.14
Clutch Fluid Level 2.11
Clutch Fluid, Filling and Bleeding 15.14
Clutch Inspection 9.17
Clutch Installation 9.20
Clutch Lever $1.25,2.11$
Clutch Removal 9.15
Clutch Shaft
Assembly View 10.9
Inspection 10.13
Installation 10.21
Removal 10.13
Clutch Special Tools 1.16
Clutch Specifications 9.2
Clutch Switch, Removal, Installation Installation 18.10
Removal 18.10
Testing 19.15
Clutch Switch Circuit Test 18.9
Clutch System Components 9.4
Clutch, Starter One-Way 9.30
Clutch, Troubleshooting 9.31
Codes, Fuel Injection System Fault 5.27
Codes, Viewing and Clearing 5.26
Coil, Ignition
Installation 17.12
Removal 17.12
Compartment, Glove 1.28
Compression Test, Engine 2.18
Connecting Rod
Bearing Selection, Clearance Inspection 10.18
Big End Inspection 10.17
Installation 10.19
Removal 10.16
Side Clearance 10.16
Small End Inspection 8.7
Specifications 10 .3
Torque 10.5
Console Cover. Removal 3.17
Conversion Chart, Fahrenheit to Celsius 1.48
Conversion Chart, Units of Measure 1.48
Conversion Table, Error Code 5.28
Cooler, Oil 4.8
Countershaft, Assembly View 10.10
CPS Testing 17.11
Crankcase
Assembly 10.21
Assembly \& Sealing 10.25
Components, Assembly View 10.4
Reed Inspection 10.22
Separation 10.6
Tools 10.2
Torque 10.4
Torque Pattern 10.5, 10.26
Crankcase Emission Control 1.14
Crankshaft
Cleaning, Inspection $10.19,10.20$
Removal 10.15
Specifications 10.3
Torque 10.5
Crankshaft Position Sensor
AC Output Test 17.11
Resistance Testing 17.10
Cruise Control
Accelerate 19.17
Cable Inspection 2.10
Cancelling 19.17
Decelerating 19.17
Resume 19.17
Setting 19.17
Cruise Control Buttons 1.26
Cruise Control Module Inputs / Outputs 19.18
Current Drain Test, Battery 16.8
Current Draw Test, Fuel Pump 5.19
Cylinder
Bore Inspection 8.4
Installation 8.10
Removal 8.4
Warpage Measurement 8.6
Cylinder \& Piston
Specifications 8.3
Troubleshooting 8.11
Cylinder Head
Assembly 7.24
Assembly View 7.7
Disassembly / Inspection 7.17, 7.18
Installation $7.25,7.27$
Removal $7.15,7.16$
Torque 7.7
Torque Procedure $7.26,7.29$
Cylinder Head \& Valve Train Troubleshooting 7.34
Cylinder Head \& Valve Train Specifications 7 .3
Cylinder Head Temperature Sensor 5.35
Cylinder Stud Torque 8.2

D

Dash Panel, Instruments 1.20
Data Grid, Digital Wrench Examples 5.42
Decimal Equivalents 1.47
De-pressurizing the Fuel System 5.11
Diagnostic Flow Chart
Starter Motor 18.5-18.6
Diagnostics
Auto Cancel System 19.12
Auto Cancel System, Self 19.8, 19.9
Blink Codes, Auto Cancel Turn Signal System 19.10
Diagnostics, Air Temperature Sensor 5 .34
Diagnostics, Crankshaft Position Sensor 17.11
Diagnostics, Cylinder Head Temperature 5.35
Diagnostics, Fuel Pump 5 .18
Diagnostics, Radio and Switch 19.21
Diagnostics, Throttle Position Sensor 5.32
Diagnostics, TMAP Sensor 5.33
Diagnostics, Vehicle Speed Sensor 5.37
Diagram, Electric Start System 18.4
Diagram, Fuel Pump Circuit 5.16
Diagram, Auto Cancel Turn Signals 19.7, 19.11
Digital Wrench Data Grid Examples 5.42
Digital Wrench Fuel Injection Tools 5.39
Digital Wrench Versions 5.39
Diode, Regulator / Rectifier,Testing 16.12
Disassembly
Cylinder Head 7.17
Front Fork 12.19
Disassembly, Clutch 9.15
Disassembly, Oil Pump 4.12
Disc Brake Inspection 15.20
Drain Hose, Fuel Cap 5.6
Drain Plug Torque, Oil 2.7
Drive Belt Adjustment 2.21
Drive Belt Condition 2.19
Drive Belt Tension / Deflection Table 2.21
Drive Belt Tension Inspection 2.20
Drive Belt Wear Analysis 2.19
Drive Line 11.2
Fastener Torque 11.12
Drive Sprocket
Fastener Torque 11.3
Inspection 11.6
Installation 11.6
Removal 11.5
E
EFI Circuit Wiring 5.30
EFI Circuit Wiring Diagrams 5.30
Electric Starter
Kickback Troubleshooting 5.47
Specifications 18.2
Torque Specifications 18.2
Electrical Diagnostics, Fuel Pump 5.18
Electrical Diagram, Fuel Pump Circuit 5.16
Electrical Special Tools 1.15
Electrical System Safety 16.2
Electrical Test adaptor Kit 17.5
Electrical, Current Draw Test, Fuel Pump 5.19
Emergency Flashers 1.22
Emission Control, Noise and Vehicle 1.11
Emission Control Systems 1.14
Emission Sources 1.14
Engine
Installation 6.12
Oil \& Filter Change 2.7
Oil Capacity 2.7
Start Switch 1.26
Stop Switch 1.26
Engine Compression Test 2.18
Engine Installation 6.11
Engine Lock Tool 9.22
Engine Mounting Torque Values 6.4
Engine Number Location 1.11
Engine Removal 6.6
Engine Removal Overview 6.2
Engine Special Tools 1.16
Engine to Chassis Harness Connector 5.29
Error Code Conversion Table 5.28
Evaporative Emission Control (California Models) 1.14
Exhaust Emission Control 1.14
Exhaust Muffler Assembly View 3.43
Exhaust System Assembly View 3.42
F
Fast Idle Speed 2.8
Fastener Torque Specifications 2.3
Fastener Torque Specifications, Maintenance Items 2.3
Fault Codes 5.36
Fault Codes, Chart 5.27
Fault Codes, Viewing and Clearing 5.26
Fender, Front 3.16
Filter, Air 2.6
Filter, Fuel 2.14
Filter, Oil 2.7
Flasher Module Input / Output Table 19.12
Fluid, Brake, Filling \& Bleeding 15.14
Flush, Brake System Fluid 15.13
Flywheel
Assembly View 9.21
Puller 9.24
Flywheel (Rotor) Assembly View 9.21
Flywheel (Rotor) Removal 9.24
Flywheel Installation 9.25
FMI Codes 5.28
Foot Control Adjustment 1.27
Foot Rest Support Torque 6.4
Fork Type Identification 12.5
Fork, Front 12.7, 12.8
Frequencies, CB Radio 1.40
Front Axle Inspection 12.14
Front Axle \& Triple Clamp Assembly View 12.6
Front Brake Caliper 15.10

IX. 4

Front Brake Fluid Level 2.12
Front Brake Master Cylinder 15.8
Front Brake Pad Replacement 15.17
Front Brake Pad Inspection 2.13
Front Caliper
Installation 15.27
Removal 15.23
Front Fender 3.16
Assembly View 12.4
Front Fork
Assembly 12.25
Assembly View 12.7, 12.8
Disassembly 12.19
Inspection 12.24
Installation 12.30
Removal 12.18
Front Fork Type Identification 12.5
Front Master Cylinder
Installation 15.23
Removal 15.20
Front Suspension Inspection 2.28
Front Wheel
Inspection 12.14
Removal 12.13
Front Wheel \& Suspension
Specifications 12.3
Troubleshooting 12.37
Fuel
Cap 1.28
Filter 2.14
Gauge 1.20
Fuel Injection Component Location 5.22
Fuel Injection Overview Of Operation 5.24
Fuel Injection Sensor Diagnostics 5.26
Fuel Injection Service Precautions 5.5
Fuel Injection Special Tools 1.17
Fuel Injection System Self Diagnostics 5.24
Fuel Injection Tools, Digital Wrench 5.39
Fuel Level Sensor 5.8
Fuel Level Sensor Resistance Test 5.17
Fuel Pressure 5.20
Fuel Pressure Specification 5.20
Fuel Pump Assembly 5.8
Fuel Pump Circuit Diagram 5.16
Fuel Pump Current Draw Test 5.19
Fuel Pump Diagnostics 5.18
Fuel Pump Installation 5.12
Fuel Pump Pressure Inspection 5.20
Fuel Pump Removal 5.11
Fuel Pump Supply Voltage 5.18
Fuel Rail Removal 5.23
Fuel System De-pressurization 5.11
Fuel System Inspection 2.14
Fuel System Priming 5.11
Fuel System Safety 5.3
Fuel System Special Tools 1.17
Fuel System Specifications 5.4
Fuel System Troubleshooting 5.46-5.49
Fuel System Troubleshooting, Basic 5.4
Fuel Tank Removal 5.14
Fuel Tank Vent and Drain Hose Routing 5.6
Fuel Tank Vent and Drain Hose Routing, UK 5.6
Fuel Warning Light 1.23
Fuse Inspection / Replacement 2.29
Fuse, location and replacement 19.2
G
Gear Position Indicator $1.21,1.23$
Gear Position Switch
Testing 19.15
Gear Ratios 10.2
Glove Compartment 1.28
GPS 19.29
Guide, Camshaft Chain 7.30
Guide. Valve 7.21
Guidelines, Transporting 1.18
H
Handgrip Heater Switch 1.22
Handlebar
Assembly View 12.11
Removal 12.12
Handlebar Installation 12.12
Hauling 1.18
Hazard Switch 1.22
Hazard System Circuit 19.7, 19.11
Head Pipe, Exhaust, Assembly View 3.43
Headlamp Aim Adjustment 2.23
Headlamp Aim Inspection 2.23
Headlamp Assembly View 19.3
High Beam Switch 1.24
I

I

ICOM System
Activation 1.41
Headset Receptacles 1.42
Voice Activation (VOX) 1.41
Volume (Driver) 1.41
Volume (Passenger) 1.41
Identification, Fork Type 12.5
Idle Air Control Circuit Diagnostics 5.36
Idle Air Control Removal 5.21
Idle Speed 2 .8
Idle Stop Screw 5.4
Ignition Circuit Wiring Diagram 17.4
Ignition Coil Removal and Installation 17.12
Ignition Coil Primary Circuit Test 17.8
Ignition Switch 1.19
Ignition Switch Cover Removal 3.18
Ignition System
Flow Chart, Troubleshooting 17.6
Safety 17.2
Spark Test 17.7
Specifications 17.2
Torque Specifications 17.3

IX 5

I (Cont.)

Indicator
Check Engine 1.23
Gear Position 1 .21
High Beam 1.23
Low Fuel 1.23
Low Oil Pressure 1.23
Neutral/Gear Position 1.23
Turn Signal 1.23
Indicator Lamps 1.20
Information Display 1.20
Information Display Error Codes 5.28
Injector Removal 5.23
Inspection
Axle, Front 12.14
Balance Shaft 10.24
Battery 16.6, 18.7
Cam Chain Tensioner 7.10
Camshaft $7.13,7.15$
Connecting Rod Bearing Clearance 10.18
Connecting Rod Big End 10.17
Crankshaft 0.19
Cylinder 8.4
Cylinder Bore 8.4
Cylinder Head 7.18
Drive Belt 115
Drive Sprocket 11.6
Front Axle 12.14
Front Fork 12.24
Front Wheel 12.14
Main Bearing Oil Clearance 10.20
Main Bearings 10.20
Piston 8.6
Piston Pin 8.7
Piston Ring 8.6
Rear Axle 13.9
Rear Wheel 13.10
Rear Wheel Bearing 13.10
Rocker Arm 7.12, 7.14
Shift Drum 10.15
Shock Absorber 13.19
Sprocket, Drive 11.6
Transmission 10.14
Valve $7.18-7.20$
Valve Seat 7.22
Wheel 14.7
Wheel Bearing, Front 12.15
Wheel, Front 12.14
Inspection, Clutch 9.17
Inspection, Drive Belt Tension 2.20
Inspection, Front Brake Pad 2.13
Inspection, Front Suspension 2.28
Inspection, Headlamp Aim 2.23
Inspection, Oil Pump 4.11
Inspection, Rear Brake Pad 2.13
Inspection, Sidestand 2.24
Inspection, Sidestand Pad 2.24
Inspection, Split Gear 9.25
Inspection. Sprocket, Rear 2.18
Inspection, Starter Drive Gear 9.27
Inspection, Starter Torque Limit Clutch 9.28
Inspection, Torque Compensator 9.22
Installation
Balance Shaft 10.24
Brake Disc, Front 12.15
Brake Disc, Rear 13.14
Clutch Pinion Shaft 9.9
Connecting Rod 10.19
Cylinder 8.10
Cylinder Head $7.25,7.27$
Drive Belt 11.5
Drive Sprocket 11.6
Engine 6.12
Front Fork 12.30
Fuet Pump 5.12
Handlebar 12.12
Piston 8.9
Piston Ring 8.8
Primary Cover 9.13
Rear Master Cylinder 15.28
Rear Sprocket 13.14
Rear Wheel 13.15
Rear Wheel Bearing 13.12
Shift Ratchet 9.12
Shock Absorber 13.20
Sprocket, Drive 11.6
Sprocket, Rear 13.14
Starter Motor 18.19
Stator 16.16
Swingarm 13.23
Tire 14.9
Transmission 10.23
Triple Clamp 12.33
Wheel Bearing, Front 12.16
Wheel, Front 12.17
Wheel, Rear 13.15
Installation Starter Clutch 9.30
Installation, Battery 2.17
Installation, Clutch 9.20
Installation, Engine 6.11
Installation, Flywheel 9.25
Installation, Fuel Tank 5.15
Installation, Oil Cooler 4.7
Installation, Oil Pump 4.15
Installation, Primary Drive Gear 9.29
Installation, Split Gear 9.26
Installation, Starter Gear 9.30
Installation, Torque Compensator 9.23
Instrument Cluster 1.20
Instruments
Fuel Gauge 1.20
Speedometer 1.20
Tachometer 1.20
Volt Meter 1.20
J
Judder Spring 9.19
K
Key Identification Number 1.11
Key Off Current Draw Test 16.8
Key, Reprogramming Authorization 5.45
KPH to MPH. Changing 1.21
IX. 6
L
Leakage Test, Diode 16.13
Left Handlebar Switch 1.24
Lever, Clutch $1.25,2.11$
Lever, Front Brake 2.10
Load Test, Battery 16.8, 18.7
Location, Engine Number 1.11
Location, Key Identification Number 1.11
Location, Model Number 1.11
Location, VIN Number I.II
Low Beam Switch 1.24
Lubrication System 4.3
Lubrication, Shift Pedal 9.5
Lubrication, Sidestand 2.24
M
Main Bearing
Oil Clearance Inspection 10.20
Mainshaf Assembly View 10.9
Main Switch 17.13
Maintenance
Battery Installation 2.17
Battery Removal 2.17
Clutch Fluid Level 2.11
Clutch Lever 2.11
Drive Belt Condition 2.19
Drive Belt Wear Analysis 2.19
Front Brake Fluid 2.12
Front Brake Lever 2.10
Rear Brake Fluid 2.12
Rear Brake Pedal 2.11
Rear Suspension Air Pressure 2.27
Shift Pedal 2.11
Throttle Cable 2.9
Maintenance Products 2.4
Maintenance Products, Chemicals 2.4
Maintenance Products, Lubricants 2.4
Maintenance Special Tools 1.15
Maintenance, Headlamp Aim Inspection 2.23
Master Cylinder
Fron
Installation 15.23
Removal 15.20
Rear
Installation 15.28
Removal 15.28
Master Cylinder, Clutch 15.8
Master Cylinder, Front Brake 15.8
Master Cylinder, Rear Brake 15.9
Material Safety Data Sheet 1.12
Memory Check Sum Error 5.37
Metric to U.S. 1.21
Mode Button 1.24
Model Number 1.10
Model Number Location 1.11
Module, Cruise Control 19.18
MPH to KPH, Changing 1.21
MSDS Sheets 1.12
Muffler Assembly View 3.43
N
Neutral Indicator 1.23
Neutral Switch
Removal 19.16
Testing 19.15
Neutral Switch Test 18.8
Noise Emission Control 1.11
Noise Emission Control System 1.14
0
Odometer 1.21
Odometer, Trip 1.21
Oil \& Filter Change 2.7
Oil Capacity 2.7
Oil Clearance, Main Bearings 10.20
Oil Cooler 4 .8
Oil Cooler Installation 4 .7
Oil Cooler Removal 4.6
Oil Drain Plug Torque 2.7
Oil Line Cover, Removal 3.18
Oil Pressure 4 .8
Oil Pressure Indicator 1.23
Oil Pump Assembly 4.13
Oil Pump Disassembly 4.12
Oil Pump Inspection 4.11
Oil Pump Installation 4.15
Oil Pump Removal 4.9
Oiling System Overview 4.2
Oiling System Specifications 4 .3
Oiling System Troubleshooting 4.2
One-Way Clutch Installation 9.30
Ordering Special Tools 1.17
Overdrive Switch Testing 19.15
Overview, Oiling System 4 .2
Ozone Cracking 14.4
P
Pad, Front Brake, Replacement 15.17
Pad, Sidestand, Replacement 2.24
Panel, Seat Trim, Install 3.36
Panel, Street Trim, Removal 3.36
Part Numbers, Owner's Manuals 1.12
Part Numbers, Publication 1.12
ECM Battery Voltage Test 5.38
ECM Connector Access 5.29
ECM Connector Test Precautions 5.29
ECM Reflash 5.45
ECM Removal 5.29
ECM Reprogramming 5.43
ECM Reprogramming Tips 5.43
P.Code Conversion Table 5.28
Pedal Height, Shift 9.5
Pedal, Rear Brake 2.11
Pedal, Shift 2.11
Periodic Maintenance 2.5
P

R

Periodic Maintenance, Battery 2.16
Periodic Maintenance, Battery Charging 2.16
Periodic Maintenance, Battery Storage 2.16
Periodic Maintenance, Cables 2.9
Periodic Maintenance, Crankcase Ventilation 2.14
Periodic Maintenance, Engine Compression 2.18
Periodic Maintenance, Engine Oil Level 2.6
Periodic Maintenance, Front Brake Pad Inspection2.13
Periodic Maintenance, Front Suspension Inspection 2.28
Periodic Maintenance, Fuel System Inspection 2.14
Periodic Maintenance, Fuel Tank Vent 2.14, 2.15
Periodic Maintenance, Periodic Maintenance Table 2.5
Periodic Maintenance, Rear Brake Pad Inspection 2.13
Periodic Maintenance, Rear Swing Arm Inspection 2.26
Periodic Maintenance, Side Stand Pad Replacement 2.24
Periodic Maintenance, Sidestand Pad. 2.24
Periodic Maintenance, Sidestand Removal 2 .24
Periodic Maintenance, Sidestand Spring Removal 2.24
Periodic Maintenance, Spark Plug Inspection 2.15
Periodic Maintenance, Spark Plug Removal 2.15
Periodic Maintenance, Sprocket Inspection 2.18
Periodic Maintenance, Steering Head Inspection 2.28
Periodic Maintenance, Tire Pressure Table 2.8, 13.2
Periodic Maintenance, Wheel Alignment 2.21
Periodic Maintenance, Wheel Bearing Inspection 2.28
Piston 8.4
Piston Pin. Inspection 8.7
Piston Ring
Compressor 8.10
Installation 8 .8
Profile \& Orientation 8.2
Polishing 2.30
Pressure Inspection, Fuel Pump 5.20
Pressure Relief Valve 4.10
Pressure, Oil 4 .8
Pressure, Tire 2.8, 13.2
Primary Cover
Assembly View 9 .6
Installation 9.13
Removal 9.10
Primary Drive
Assembly View 9.21
Primary Drive Gear Installation 9.29
Primary Drive Gear Removal 9.28
Primary Drive Troubleshooting 9.31
Priming The Fuel System 5.11
Probes, Electrical Test adaptor 17.5
Protectants 2.30
Publication Part Numbers 1.12
Pump Assembly, Fuel 5.8
Pump Removal, Fuel 5.11
Pump, Fuel, Diagnostics 5.18
Pump, Fuel, Installation 5.12
Pump, Fuel, Supply Voltage 5.18
Pump, Oil, Removal 4.9
Radio Diagnostics 19.21
Radio, Reprogramming 19.29
Ratios, Gear 10.2
Rear Axle Inspection 13.9
Rear Brake Caliper 15.11
Rear Brake Fluid Level 2.12
Rear Brake Master Cylinder 15.9
Rear Brake Pad Replacement 15.18
Rear Brake Pad Inspection 2.13
Rear Caliper
Installation 15.31
Removal 15.29
Rear Console Cover Removal 3.17
Rear Master Cylinder
Installation 15.28
Removal 15.28
Rear Shock 13.17
Rear Sprocket
Installation 13.14
Removal 13.14
Torque 11.8
Rear Wheel
Inspection 13.10
Installation 13.15
Removal 13.8
Rear Wheel \& Axle Assembly View 13.4
Rear Wheel \& Suspension
Specifications 13.3
Troubleshooting 13.24
Rear Wheel Bearing
Inspection 13.10
Installation 13.12
Removal 13.10
Rear Wheel, Billet, Assembly View 13.7
Rear Wheel, Cast, Assembly View 13.6
Rectifier, Voltage Drop Test 16.12
Rectifier / Regulator, Testing 16.12
Rectifier Test 16.14
Reed Valve, Crankcase 10.22
Reference Data 1.47
Reference Data, Decimal Equivalents 1.47
Reference Data, Fahrenheit to Celsius 1.48
Reference Data, Measurement Conversion Chart 1.48
Reference Data, Tap Drill Sizes 1.47
Reflash 5.45
Reflash Authorization 5.43
Reflash Tips 5.43
Reflash. Process Overview 5.43
Reflash, Radio / Communication System 19.29
Regulated Voltage Test 16.9
Regulator / Rectifier
Replacement 16.15
SCR Test 16.14
Testing 16.12
Relay, Starter, Testing 18.11
Relay, Stater, Ground Circuit Test 18.7
Relays, location and replacement 19.2
Removal
Balance Shaft 10.24
Battery 16.5
Brake Disc, Front 12.15
Brake Disc, Rear 13.14
Cam Chain Tensioner 7.9
Camshaft 7.14
Clutch Pinion Shaft 9.8
Clutch Shaft 10.13
Connecting Rod 10.16
Crankshaft 10.15
Cylinder 8.4
Cylinder Head $7.15,7.16$
Drive Belt 11.5
Drive Sprocket 11.5
Front Fork 12.18
Front Master Cylinder 15.20
Front Wheel 12.13
Handlebar 12.12
Ignition Switch 17.13
Main Switch 17.13
Neutral Switch 19.16
Piston 8.6
Piston Ring 8.6
Primary Cover 9.10
Rear Master Cylinder 15.28
Rear Sprocket 13.14
Rear Wheel 13.8
Rear Wheel Bearing 13.10
Rocker Arm 7.12, 7.14
Shift Ratchet 9.11
Shock Absorber 13.18
Sprocket, Drive 11.5
Sprocket, Rear 13.14
Starter Motor 18.19
Stator 16.16
Swing Arm 13.21
Transmission 10.13
Triple Clamp 12.32
Valve Cover 7.9
Valve Guide 7.21
Wheel Bearing. Front 12.16
Removal Rotor (Flywheel) 9.24
Removal, Battery 2.17
Removal, Clutch 9.15
Removal, Engine 6.2, 6.6
Removal, Fuel Pump 5.11
Removal, Fuel Tank 5.14
Removal, Ignition Switch Cover 3.18
Removal, Oil Cooler 4.6
Removal, Oil Line Cover 3.18
Removal, Oil Pump 4.9
Removal, Primary Drive Gear 9.28
Removal, Rear Console Cover 3.17
Removal, Seat 3.34
Removal, Side Cover 3.34
Removal, Spark Plug 2.15
Removal, Split Gear 9.25
Removal. Starter Clutch 9.27
Removal, Starter Drive Gear 9.27
Removal. Torque Compensator 9.22
Replacement, Sidestand Pad 2.24
Reprogramming Authorization 5.43
Reprogramming The ECM 5.43
Reprogramming the Radio / Communication System 9.29
Reprogramming Tips, ECM 5.43
Resetting Displays 1.24
Resistance Test, Stator 16.11
Reverse Drive System 11.10
Reverse Gear Case Assembly View 11.11
Reverse System 19.30
Reverse System Diagnostics 19.31
Ride Height Adjustment 2.27
Rings, Piston
End Gap Measurement 8.6
Inspection 8.6
Profile \& Orientation 8.2
Removal 8.6
Rocker Arm
Assembly View 7.5, 7.6
Inspection $7.12,7.14$
Installation 7.26
Removal $7.12,7.14$
Torque 7.5, 7.6
Rocker Arm Shaft Inspection 7.12, 7.14
Rotor (Flywheel) Assembly View 9.21
Rotor, Brake, Inspection 15.20
Routing Diagram, Fuel Cap Area Drain Hose 5.6
Routing Diagram, Fuel Tank Vent Hose 5.6
S

Saddlebag 1.29
Safety
Battery 16.2
Brake System 15.2
Electrical 16.2
Ignition System 17.2
Safety Information, Instructions 1.4
Safety Information, Labels 1.4
Safety, Frame, Body \& Exhaust 3.2
Safety, Fuel System 5.3
Seat Heater Switch 124
Seat Removal 3.34
Sensor Diagnostics 5.26
Sensor, Angle 19.27
Sensor, Fuel Level 5.8
Sensor, Fuel Level, Resistance Test 5.17
Sensor, Speed, Test 19.13
Sensor, TMAP 5.33
Service Manual Part Numbers 1.12
Service Rules 1.3
Service Specifications 2.2
Service Specifications, Oil Change 2.2
Service Specifications, Tune Up 2.2
Shift Drum, Assembly View 10.11
Inspection 10.15
Shift Fork Assembly View 10.11
Shift Linkage
Assembly View 9.5
Torque 9.5
Shift Linkage Troubleshooting 9.31
Shift Mechanism. 9.7
Shift Pedal 2.11
Shift Pedal Height 9.5
Shift Ratchet
Installation 9.12
Removal 9.11
Shock Absorber
Inspection 13.19
Installation 13.20
Removal 13.18
Shock, Rear 13.17
Side Clearance, Connecting Rod 10.16
Side Cover Removal 3.34
Sidestand Lubrication 2.24
Sidestand Pad Inspection 2.24
Sidestand Removal 2.24
Sidestand Spring Removal 2.24
Sidestand, Inspection 2.24
Software Version 5.39
Solenoid (Sce Starter Relay) 18.7
Spark Plug Removal 2.15
Spark, Ignition 17.7
Special Tools 15, 2.3
Special Tools, Clutch 1.16
Special Tools, Electrical 1.15
Special Tools, Engine 1.16
Special Tools, Fuel Injection 1.17
Special Tools, Fuel System 1.17
Special Tools, General 1.15
Special Tools, Maintenance 1.15
Special Tools, Maintenance Tools 2.3
Special Tools, Ordering Information 1.17
Special Tools, Precision Measurement 1.15
Special Tools, Steering 1.16
Special Tools, Suspension 1.16
Special Tools, Tire 1.17
Special Tools, Transmission 1.16
Special Tools, Tune Up 1.15
Special Tools, Wheel 1.17
Specification, Fuel Pressure 5.20
Specifications
Charging System \& Alternator 16.4
Clutch 9.2
Connecting Rod 10.3
Crankshaft 10.3
Cylinder \& Piston 8.3
Cylinder Head \& Valve Train 7.3
Drive Train 10.2
Electric Starter 18.2
Electrical System 16.4
Front Wheel \& Suspension 12 .3
Ignition System 17.2
Rear Wheel \& Suspension 13.3
Transmission 10.3
Wheel 14.3
Specifications, Drive Belt 2.21
Specifications, Fuel System 5.4
Specifications, Oiling System 4.3
Speed Sensor Test 19.13
Speed Sensor, Diagnostics 5.37
Speedometer 1.20
Troubleshooting 19.13
Split Gear, Assembly View 9.21
Split Gear Inspection 9.25
Split Gear Installation 9.26
Split Gear Removal 9.25
SPN Codes 5.28
Spring
Clutch 9.18
Judder 9.19
Spring, Sidestand, Removal 2.24
Spring, Valve, Free Length 7.18
Sprocket, Drive
Inspection 11.6
Installation 11.6
Removal 11.5
Sprocket, Cam Chain 7.11
Sprocket, Rear 13.14
Removal 13.14
Sprocket, Rear, Inspection 2.18
Squelch 1.39
Starter Button 1.26
Starter Clutch Installation 9.30
Starter Clutch Removal 9.27
Starter Drive Gear Inspection 9.27
Starter Drive Gear Removal 9.27
Starter Gear Installation 9.30
Starter Interlock 1.25
Starter Kickback Troubleshooting 5.47
Starter Motor
Installation 18.19
Removal 18.19
Starter Motor Current Draw 18.18
Starter Relay Ground Circuit Test 18.7
Starter Relay Testing 18.11
Starter System
Diagnostic Flow Chart $.18 .5-18.6$
Electrical Wiring Diagram 18.4
Starter Torque Limit Clutch
Breakaway Torque 9.28
Starter Torque Limit Clutch Inspection 9.28
Starter, Electric
Specifications 18.2
Torque Specifications 18.2
Starting In Gear 1.25
Stator
Ground Continuity Test 16.11
Installation 16.16
Removal 16.16
Resistance Test 16.11
Stator Output Test 16.10

Stecring
Bearing Lock Nut Adjustment 12.33
Bearing Race Installation 12.36
Bearing Race Removal . 12.36
Steering Head Inspection 2.28
Steering Special Tools 1.16
Steering Stem
Bearing Installation 12.35
Bearing Removal . 12.34
Storage . 2.31
Storage, Battery . 2.16
Suspension Adjustment, Rear . 2.27
Suspension Minor Pivot Fastener Torque 6.5
Suspension Special Tools . 1.16
Swing Arm
Installation . 13.23
Removal . 13.21
Swing Arm Bushing . 13.22
Swing Arm Inspection 2.26
Swingarm \& Suspension Linkage, Assembly View 13.5
Switch
Console Mounted 1.22
Driving Lamp 1.22
Engine Stop . 1.26
Handgrip Heater 1.22
Hazard . 1.22
Starter 1.26
Switch, Clutch
Installation . 18.10
Removal . 18.10
Switch, High/Low Beam . 1.24
Switch, Ignition . .. 1.19
Removal . 17.13
Switch, Left Handlebar . 1.24
Switch, Mode . 1.24
Switch, Tipover . 19.27
Switch, Turn Signal . 1.25
Switch, Windshield Adjustment 1.24
Synchronizing Screw, Throttle Body 5.4

T

Tachometer . 1.20
Tank Removal, Fuel . 5.14
Tank, Fuel, Installation . 5.15
Tap Drill Sizes . 1.47
Temperature Display 1.21
Tensioner Installation, Cam Chain 7.10
Test
Brake Light Switch 19.14
Clutch Switch . 19.15
Clutch Switch Circuit . 18.9
Current Draw, Starter Motor 18.18
Gear Position Switch . 19.15
Neutral Switch . 18.8, 19.15
Overdrive Switch . 19.15
Speed Sensor . 19.13
Starter Relay . 18.11
Voltage Drop.
Negative Side . 18.16
Positive Side . 18.13
Test Adaptor Kit, Electrical 17.5
Throttle Body Synchronization 5.4
Throttle Cable Inspection 2.9
Throttle Position Sensor Diagnostics 5.32
Timing
Camshaft
Front Cylinder 7.31
Rear Cylinder 7.30
Camshaft Quick Reference 7 .8
Tipover 19.27
Tips, ECM Reprogramming 5.43
Tire
Balance Dots 14.9
Balancing 14.11
Cupping 14.4
Directional Arrows 14.9
Inflation / Precautions 14.10
Warnings \& Precautions 14.2
Tire \& Wheel Troubleshooting 14.13
Tire Information Label 1.11
Tire Installation 14.9
Tire Pressure Table 2.8. 13.2
Tire Removal
General 14.5
Procedure 14.6
Tire Special Tools 1.17
Tire Valve
Inspection / Installation 14.8
Tire Wear
Causes 14.4
TMAP Sensor 5.33
Tool
Clutch Spring Compressor 9.16
Crankcase 10.2
Engine Lock 9.22
Flywheel Puller 9.24
Front Wheel \& Suspension 12.2
Tools, Special 1.15
Torque
Belt Guard 11.4
Brake System 15.3
Cam Drive \& Valve Cover 7.4
Camshaft Carrier $7.5,7.6$
Charging System \& Alternator Fastener 16.4
Connecting Rod 10.5
Crankcase 10.4
Crankshaft 10.5
Cylinder Head $7.7,7.26,7.29$
Cylinder Stud 8.2
Drive Line 11.2
Drive Sprocket 11.3
Oil Drain Plug 2.7
Rocker Arm 7.5, 7.6
Shift Linkage 9.5
Shift Mechanism 9.7
Torque Compensator
Assembly View 9.21
Torque Compensator Inspection 9.22
Torque Compensator Installation 9.23
Torque Compensator Removal 9.22
Torque Limit Clutch, Starter 9.28

T (Cont.)

Torque Pattern, Crankcase 10.5
Torque Specifications
15.3
15.3
Brake System 18.2
Torque Values, Foot Rest Supports 6.4
Torque, Engine Mount Fastener 6.4
Torque, Fastener, Ignition System 17.3
Torque, Suspension Minor Pivot 6 .5
TPS Calibration (Not Required) 5.39
Transmission
Assembly View 10.8
Inspection 10.14
Installation 10.23
Power Delivery 10.12
Removal 10.13
Specifications 10.3
Troubleshooting 10.28
Transmission Special Tools 1.16
Transporting 1.18
Transporting, Guidelines 1.18
Trip Odometer 1.21
Triple Clamp
Installation 12.33
Removal 12.32
Troubleshooting
5.47
Backfire
16.7
Battery
15.32
15.32
Brake System
Brake System 8.11
Cylinder Head \& Valve Train 7 .34
Drive Line 11.12
Front Wheel \& Suspension 12.37
Ignition System 17.6
Rear Wheel \& Suspension 13.24
Speedometer 19.13
Tire \& Wheel 14.13
Transmission \& Crankshaft 10.28
Troubleshooting, Clutch 9 .31
Troubleshooting, Fuel System 5.46-5.49
Troubleshooting, Fuel System Basic 5.4
Troubleshooting, Oiling System 4.2
Troubleshooting, Primary Drive 9.31
Troubleshooting, Shift Linkage 9.31
Tune-up Special Tools 1.15
Turn Signal Circuit 19.7, 19.11
Turn Signal Flasher Module 19.12
Turn Signal Indicator 1.23
Turn Signal Switch 1.25
Turn Signal System
Self Diagnostics 19.8, 19.9
U
U.S. to Metric 1.21
Unit Display, Changing 1.21
Valve Cover Removal 7.9
Valve Guide Removal 7.21
Valve Inspection 7.18-7.20
Valve Seat Inspection / Valve Seat Reconditioning 7.22
Valve Spring Free Length 7.18
Valve, Pressure Relief 4.10
Valve, Tire 14.8
Vehicle Emission Control 1.11
Vehicle Emission Control Information 1.14
Vehicle Identification Number (VIN) 1.10
Vehicle Loading 1.9
Vehicle Speed Sensor Diagnostics 5.37
Vent Hose, Fuel Tank 5.6
VIN Location 1.11
VIN Number Location 1.11
Voice Activation (VOX), CB Radio 1.41
Voltage Drop Test 16.12
Negative Side 18.16
Positive Side 18.13
Volume Setting, CB Radio 1.39
Volume Setting, ICOM 1.41
W
Wamings \& Precautions, Tire 14.2
Washing, Waxing 2.30
Wear, Tire, Causes 14.4
Wheel Specifications 14.3
Wheel Alignment, Rear 2.21
Wheel Bearing Inspection 2.28
Wheel Bearing, Front
Inspection 12.15
Installation 12.16
Removal 12.16
Wheel Hub, Front, Assembly View 12.10
Wheel Inspection 14.7
Wheel Special Tools 1.17
Wheel, Front 12.9
Assembly View 12.9
Inspection 12.14
Installation 12.17
Removal 12.13
Wheel, Rear, Installation 13.15
Wheel, Rear, Billet, Assembly View 13.7
Wheel, Rear, Cast, Assembly View 13.6
Windshield Adjustment (Manual) 1.25
Windshield Adjustment, (Electric) 1.24
Wiring Diagram
Auto Cancel Turn Signal 19.7, 19.11
Electric Start System 18.4
Wiring Diagram, Ignition Circuit 17.4
Wiring Diagrams, EFI Related 5.30
X
XM Radio 1.44

\square

1

 － －

[^0]: © Copyright 2009 Polanis Sales Inc. All information contained within this publication is based on the latest product information at the time of publication. Due to constant improvements in the design and quality of production components, some minor discrepancies may result between the actual vehicle and the information presented in this publication. Depictions and/or procedures in this publication are intended for reference use only. No liability can be accepted for omissions or inaccuracies. Any reprinting or reuse of the depictions and/or procedures contained within, whether whole or in part, is expressly prohibited. Printed in U.S.A.

[^1]: CAUTION
 Use caution when removing nut and keep hands and body clear in case tool slips off gears.

